

CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

FACTUAL REPORT ON GROUND INVESTIGATION

Prepared for CARDIFF PARKWAY

DEVELOPMENTS LIMITED

Report Ref: 35338

Geotechnical Engineering Ltd

Centurion House, Olympus Park Quedgeley, Gloucester. GL2 4NF

01452 527743 www.geoeng.co.uk

CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

FACTUAL REPORT ON GROUND INVESTIGATION

Prepared for CARDIFF PARKWAY DEVELOPMENTS LIMITED

Report Ref: 35338

PROJECT: Site redevelopment

CONSULTANT: Ove Arup & Partners Limited

VOLUME - VERSION	STATUS	ORIGINATOR	CHECKER	APPROVED	DATE			
1 of 1 – A	DRAFT	EC	-	-	12/07/2019			
1 of 1 – B	DRAFT	EC	-	-	08/08/2019			
1 of 1 – C	FINAL	EC	-	СТ	04/09/19			
1 of 1 – D	FINAL	EC	-	СТ	08/10/19			
1 of 1 – E	FINAL	EC	-	СТ	15/10/19			
ORIGINATOR		<u> </u>	APPROVER	•	<u> </u>			
Da	,			AN				
E CRIMP Senior Geote	chnical Engine	er	C THOMAS Geotechnical Consultant					

The report is not to be used for contractual or engineering purposes unless this sheet is signed and the report designated "Final". The report has been prepared for the sole use and reliance by Cardiff Parkway Developments Limited. GEL accepts no liability as a result of the use or reliance of this report by any other parties.

CONTENTS

REPOI	RT	PAGE
1.	INTRODUCTION	1
2.	SITE LOCATION AND GEOLOGY	1
3.	GROUND INVESTIGATION	2
3.1	Fieldwork	2
3.2	Logging	6
3.3	Laboratory Testing	7
4.	REFERENCES	10
FIGUR	RES	Nos.
EXPLC	DRATORY HOLE LOCATION PLAN	1
APPE	NDICES	

APPENDIX A	FIELDWORK DATA
APPENDIX B	SUBCONTRACTOR REPORTS
APPENDIX C	PHOTOGRAPHS
APPENDIX D	LABORATORY TESTING
APPENDIX E	CHEMICAL ANALYSES

1. INTRODUCTION

It is proposed to construct a new business park with associated road and railway infrastructure near St Mellons, Cardiff. Geotechnical Engineering Limited (GEL) was instructed by Ove Arup & Partners Limited (the Consultant) on behalf of Cardiff Parkway Developments Limited (the Client) to carry out an investigation to determine the ground conditions.

The scope of works and terms and conditions of appointment were specified by the Consultant and GEL correspondence reference T28404 dated 21st March 2019. The investigation was carried out under the direction and supervision of the Consultant.

This report describes the investigation and presents the findings.

2. SITE LOCATION AND GEOLOGY

The site comprises pastural fields and agricultural land to the east of St Mellons, Cardiff. The site is centred on approximate National Grid co-ordinates ST 250 808.

British Geological Survey (BGS) England and Wales (Sheet No. 263, Cardiff, 1:50 000, 1986) and the BGS online geology (1:50,000) indicate the site to be underlain by superficial Tidal Flat Deposits (clay and silt) overlying Till (variable composition). Superficial Glaciofluvial Deposits (sand and gravel) are shown to be present to the west of the site. The underlying solid geology is shown to comprise strata of the St Maughans Formation (interbedded mudstones, siltstone and sandstone). In the southernmost section of the site, strata of the Mercia Mudstone Group are shown to be present overlying the St Maughans Formation.

3. GROUND INVESTIGATION

3.1 Fieldwork

The fieldwork was carried out in general accordance with BS5930:2015 during the period 10th June to 1st July 2019 and comprised eleven boreholes, five machine excavated trial pits, six cone penetration tests (CPT), five in-situ vane tests and surface water sampling.

The exploratory hole locations were selected by the Consultant and set out by this Company and are shown on Figure 1. The ground level and co-ordinates at each exploratory hole location were established by this Company using GPS techniques.

Boreholes

The boreholes, referenced BH01 to BH11 (Appendix A), were formed using a track-mounted Geotechnical Pioneer Rig. Initially, an inspection pit was hand excavated to 1.20m at each borehole location to check for buried services. Disturbed samples were taken and retained in a combination of plastic tubs, bags and glass jars. Heavy duty dynamic sampling techniques were then employed to produce a continuous disturbed sample of 112mm nominal diameter. The samples were recovered in semi-rigid plastic liner.

On refusal to dynamic sampling, or on encountering the underlying solid geology, the boreholes were continued by rotary core drilling techniques utilising a water flush. A double-tube swivel core barrel with semi-rigid plastic liner was utilised to recover a continuous sample of 120mm or 90mm diameter. Where appropriate, dynamic sampling techniques were carried out to recover dropped core or where rotary core drilling was not suitable.

Report Ref: 35338

FRT01 v13 09/06/17 JH

The dynamic samples and rotary core were extracted horizontally from the sampler and core barrel respectively, the semi-rigid liner was cut to length and caps placed at each end to retain moisture content. All samples and core were retained in sequence in labelled, wooden coreboxes.

Undisturbed samples of suitable cohesive soils were obtained using a thin-walled stationary piston sampler in accordance with BS EN ISO 22475-1:2006. The samples of 100mm diameter were taken at depths specified by the Consultant and the samples were wax sealed on site to prevent moisture loss. The depths at which the piston samples were taken are shown on the relevant borehole logs (Appendix A).

Undisturbed samples of 100mm nominal diameter were taken in suitable cohesive soils using a thin walled, open drive sampler (UT100). Samples were wax sealed and capped on site to prevent moisture loss.

Standard penetration tests (SPT) were carried out in general accordance with BS EN ISO 22476-3:2005+A1:2011. A split barrel or a solid cone was used depending upon the materials encountered and the split barrel samples retained in airtight jars. The SPT N value was taken as the number of blows to penetrate the 300mm test drive following a 150mm seating drive. Where low penetration was recorded the seating drive was terminated at 25 blows and the test drive completed after a further 100 blows (50 blows in boreholes BH01 and BH02). Detailed SPT results, together with the energy ratio (E_r), are presented in Appendix A and summarised as uncorrected N values on the borehole logs.

Boreholes were monitored for groundwater ingress as dynamic sampling proceeded. Upon encountering water, sampling was temporarily stopped to allow the level to stabilise. Water levels were also recorded at the start and finish of each day's work and on completion of the borehole and are presented on the relevant log.

On completion, dual monitoring installations were constructed in boreholes BH01 to BH09. In each case, the borehole was partially backfilled with bentonite to form a lower seal to the instrumentation. The lower groundwater monitoring standpipe comprised a 50mm ID HDPE slotted tube set in a granular filter medium and sealed above with a bentonite plug. The upper combined gas/water monitoring standpipe comprised a 19mm ID PVC slotted tube set in a granular filter medium and sealed above with a bentonite plug.

On completion, a combined gas/water monitoring standpipe was installed in BH10. The installation consisted of a 50mm ID HDPE slotted tube set in a filter response zone of non-calcareous pea gravel. The installation was sealed above and below with a bentonite plug and accessed via a valve assembly.

The installations were protected at the surface by a lockable, raised steel cover set in concrete. Installation details are given on the relevant borehole log.

During the period 16th July 2019 to 24th September 2019 monitoring of the installations was carried out on a fortnightly basis. The installations were monitored for gas flow and then tested for methane, carbon dioxide, oxygen, hydrogen sulphide and carbon monoxide using a Gas Data GFM 435 gas analyser. Subsequent readings, along with water level records, are tabulated in Appendix A.

The installations were also monitored for Volatile Organic Compounds (VOC's) using a MiniRAE 2000 Portable Photo-Ionisation Detector (PID) with a 10.6eV gas discharge lamp. The detector uses an ultra violet light source to break down the chemicals into positive and negative ions (ionisation). The detector measures the charge of the ionised gas and converts the signal into current. The current is then amplified and displayed as "ppm"; after measurement the ions reform the original gas or vapour allowing it to be sampled. The readings are presented in Appendix A.

Prior to water sampling, the water monitoring standpipes were developed by pumping and then purged until at least three well volumes of water had been removed. Temperature, dissolved oxygen levels, pH, resistivity, conductivity, dissolved solids, salinity and redox potential readings were also taken at various levels during well development and the readings are presented in Appendix A.

On completion, borehole BH11 was backfilled with bentonite pellets and arisings.

Cone Penetration Testing and In Situ Shear Vane Testing

Inspection pits CPT01 to CPT06 and VS01 to VS05 (Appendix A), were hand excavated to a depth of 1.20m to check for buried services, prior to Cone Penetration Testing (prefixed 'CPT') or in situ shear vane testing (prefixed 'VS') being undertaken in these locations. Representative disturbed samples were taken and retained in sealed plastic bags and airtight containers to retain moisture content. On completion, all trial pits were backfilled with arisings.

Cone Penetration Testing was undertaken on behalf of this Company by In Situ SI Limited and comprised a total of six static piezocone penetration tests (CPTU), ten pore water dissipation tests and six seismic Dilatometer Marchetti Tests (SDMT). In addition, in situ shear vane testing was undertaken adjacent to locations CPT01 to CPT05. The results are presented in Appendix B as In Situ SI Limited report reference 1190290.

Trial Pits

The trial pits, referenced TP05 to TP09 (Appendix A), were formed by a wheeled excavator with a 0.60m wide backactor bucket.

Representative disturbed samples were taken and retained in sealed plastic bags and airtight containers to retain moisture content.

Hand vane tests were carried out in suitable cohesive material. The results are presented

on the trial pit logs and tabulated in Appendix A.

Photographs of the trial pit profile and spoil heap were taken and are presented in Appendix

C.

On completion, all trial pits were backfilled with arisings compacted in suitable layers by the

excavator bucket. The ground surface was left slightly proud to accommodate the future

inevitable settlement of the backfill.

Surface Water Sampling

Surface water samples were obtained from locations specified by the Consultant during

each monitoring visit. The samples were dispatched from site directly to the laboratories of

i2 Analytical, Watford, under a Chain of Custody.

General

Samples for chemical analyses were dispatched daily from site directly to the laboratories

of i2 Analytical, Watford, under a Chain of Custody. The remaining samples were brought

to this Company's laboratory for testing and storage.

3.2 Logging

The logging of soils and rocks was carried out by an Engineering Geologist in general

accordance with BS5930:2015. A key to the exploratory hole logs is presented in Appendix A.

Detailed descriptions of the core and samples are given in the borehole logs, Appendix A, along with details of sampling, in situ testing, groundwater ingress, installations and relevant comments on drilling techniques.

Hand vane tests were carried out on suitable samples. The results are summarised on the borehole logs and also tabulated in Appendix A.

Prior to logging, photographs of the core were taken and are presented in Appendix C.

Suitable core subsamples were selected by this Company. The core was carefully logged and prepared prior to preserving the subsample by wrapping in clingfilm and aluminium foil and coating with at least three layers of wax. The sample was further protected by a covering of waxed cheesecloth, labelled and transported horizontally in padded, wooden coreboxes.

The trial pits were logged in situ to a depth of approximately 1.20m and thereafter from the surface. Detailed descriptions are given in the trial pit logs, Appendix A, along with details of sampling and in situ testing, groundwater ingress and relevant comments on stability.

3.3 Laboratory Testing

FRT01 v13 09/06/17 JH

A schedule of laboratory tests was prepared by the Consultant, the following tests being carried out in accordance with BS1377:1990, unless stated otherwise. The number in brackets refers to the test number given in that standard. The results are presented in Appendix D.

The natural water content was determined on thirty-nine selected samples in accordance with BS EN ISO 17892-1:2014.

Report Ref: 35338

Liquid limit, plastic limit and plasticity index tests [Part 2:4.3, 5.3 and 5.4] were carried out on thirty-eight selected samples. Atterberg line plots have also been presented.

Particle size distributions were determined in accordance with BS EN ISO 17892-4:2016 for thiry-three samples by wet sieving [5.2]. The fine fractions of thirty-one of these samples were further analysed by sedimentation using the pipette method [5.4]. The results are presented as grading curves.

The one-dimensional consolidation properties [Part 5:3] were determined in the oedometer on twelve 63.5mm diameter by 19mm thick specimens prepared from UT100 samples. The results are presented in tabular form and also as graphs of void ratio versus log (effective pressure). On nine of these samples the coefficient of secondary compression was determined on a single stage, specified by the Consultant; plots of compression versus log time are presented for these stages.

Unconsolidated undrained triaxial compression tests were carried out under a single cell pressure on twelve specimens prepared from full diameter UT100 samples [Part 7:8]. A cell pressure specified by the Consultant was used. Fully saturated, $\phi_u = 0$, conditions were assumed and the undrained cohesion, c_u was taken as half the deviator stress at failure.

The following tests on rock samples were carried out in accordance with ISRM (2007) unless stated otherwise. Test results are presented in Appendix D.

Four rock cores were tested for unconfined compressive strength.

Point load index tests were carried out on thirty selected lengths of core.

Nineteen samples were despatched to Chemtest Limited (Newmarket) where organic matter was determined to in-house methods.

FRT01 v13 09/06/17 JH Report Ref: 35338

Four samples were despatched to Chemtest Limited (Newmarket) where loss on ignition was determined to in-house methods.

The BRE SD1 (2005) suite of tests was carried out on twenty-nine samples by Chemtest Limited (Newmarket) using in-house methods.

Selected surface water and groundwater samples were dispatched to i2 Analytical, Watford, where chemical analyses were carried out to in-house methods for a suite of contaminants. The results are presented in Appendix E.

GEOTECHNICAL ENGINEERING LIMITED

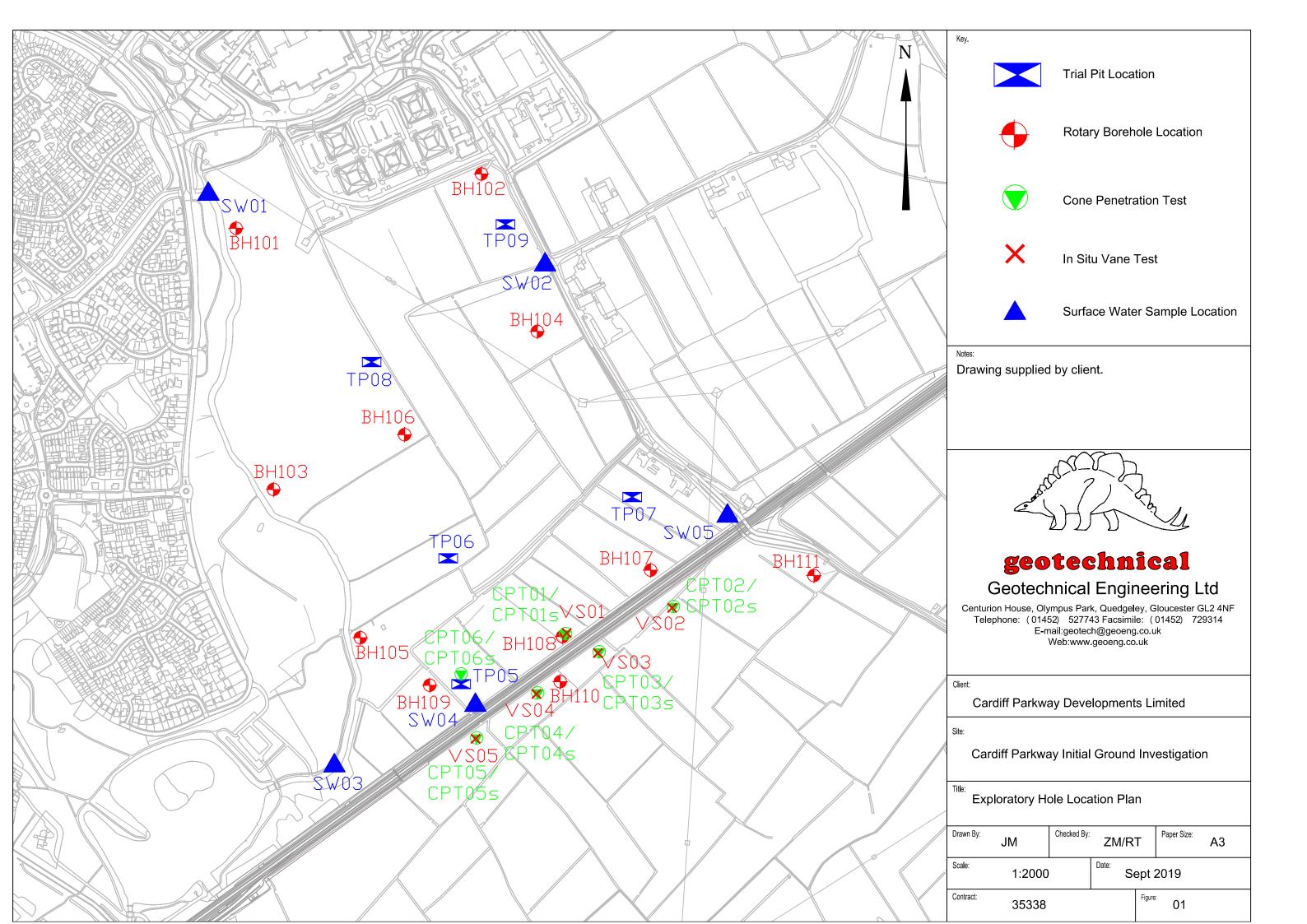
4. REFERENCES

British Standards Institution (2015): Code of practice for ground investigations. BS 5930:2015.

British Standards Institution (2012): Geotechnical investigation and testing. Field testing. Standard penetration test. BS EN ISO 22476-3:2005+A1:2011.

British Standards Institution (2016): Methods of test for soils for civil engineering purposes – Part 1: General requirements and sample preparation. BS1377-1:2016.

British Standards Institution (1990): Methods of tests for soils for civil engineering purposes. BS 1377 Parts 2-9.


British Standards Institution (2014): Geotechnical investigation and testing – Laboratory testing of soil. Part 1: Determination of water content. BS EN ISO 17892-1:2014.

British Standards Institution (2016): Geotechnical investigation and testing – Laboratory testing of soil. Part 4: Determination of particle size distribution. BS EN ISO 17892-4:2016.

International Society for Rock Mechanics (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006, edited by R Ulusay & J A Hudson. Ankara, Turkey: Turkish National Group of the International Society for Rock Mechanics.

Building Research Establishment (2005): Concrete in aggressive ground. BRE Special Digest 1. Third Edition.

FRT01 v13 09/06/17 JH

APPENDIX A

FIELDWORK DATA

KEY TO EXPLORATORY HOLE LOGS

Sample type

D Small disturbed U Undisturbed L Dynamic ES Environmental - soil Cs Core subsample (prepared) B Bulk disturbed UT Undisturbed thin wall C Core EW Environmental - water Ls Dynamic subsample (prepared) LB Large bulk disturbed P Piston W Water

Test type

- S SPT Split spoon sampler followed by uncorrected SPT 'N' Value
- C SPT Solid cone followed by uncorrected SPT 'N' Value

(*250 - Where full test drive not completed, linearly extrapolated 'N' value reported, ** - Denotes no effective penetration)

- H Hand vane direct reading in kPa not corrected for BS1377 (1990). Re* denotes refusal
- M Mackintosh probe number of blows to achieve 100mm penetration
- Mx Mexe cone average reading of equivalent CBR value in %
- PP Pocket penetrometer direct reading in kg/sq.cm
- Vo Headspace vapour reading, uncorrected peak values in ppm, using a PID (calibrated with Isobutylene, using a 10.6eV bulb)

Sample/core range/I,

- Dynamic sample
- Undisturbed sample open drive including thin wall. Symbol length reflects recovery
- x = Total Core Recovery (TCR) as percentage of core run
- y = Solid Core Recovery (SCR) as percentage of core run. Assessment of core is based on full diameter.
- z = Rock Quality Designation (RQD). The amount of solid core greater than 100mm expressed as percentage of core run.

Where SPT has been carried out at beginning of core run, disturbed section of core excluded from SCR and RQD assessment.

I_r - fracture spacing - the modal fracture spacing (mm) over the indicated length of core. Where spacing varies significantly, the minimum, mode and maximum values are given. NI = non-intact core NA = not applicable

Instrumentation

Porous tip	Perforated standpipe	Granular response zone	Bentonite Cemer benton grout		
Stratum bour	ndaries				
		Estimated boundary		— Grading boundary	

Logging

The logging of soils and rocks has been carried out in general accordance with BS 5930:2015.

Chalk is logged in general accordance with Lord et al (2002) CIRIA C574. Where possible, dynamic samples in chalk have been logged in accordance with CIRIA C574; descriptions and gradings (if presented) should be treated with caution given the potential for sample disturbance.

For rocks the term fracture has been used to identify a mechanical break within the core. Where possible incipient and drilling induced fractures have been excluded from the assessment of fracture state. Where doubt exists, a note has been made in the descriptions. All fractures are considered to be continuous unless otherwise reported.

Made Ground is readily identifiable when, within the material make up, man made constituents are evident. Where Made Ground appears to be reworked natural material the differentiation between in situ natural deposits and Made Ground is much more difficult to ascertain. The interpretation of Made Ground within the logs should therefore be treated with caution.

The descriptors "topsoil" and "tarmacadam" are used as generic terms and do not imply conformation to any particular standard or composition.

Rootlets are defined as being less than 2mm in diameter, roots are defined as in excess of 2mm diameter.

General Comments

The process of drilling and sampling will inevitably lead to disturbance, mixing or loss of material in some soil and rocks.

Indicated water levels are those recorded during the process of drilling or excavating exploratory holes and may not represent standing water levels.

All depths are measured along the axis of the borehole and are related to ground level at the point of entry. All inclinations are measured normal to the axis of the core.

Where provided, the stratigraphic names/geological rock units are for guidance only and may not be wholly accurate.

Doc. No. A01 Rev No. 20 Revision date: 11/06/18 11 June 2019

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

ВΠυ

1 of 2

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet

Scale

{8.00}

5.40mOD

Start Date 10 June 2019

End Date

Easting 324710.6

181410.9

Ground level

Northing

Depth 8.20 m

progress sample depth (m) casing test instru depth reduced legend samp date/time /core description no & depth type & Ιf -ment (m) level water depth type from to (m) value range (m) 10/06/19 Crop over firm brown slightly sandy CLAY. Abundant 0.20 5.20 1B 0.20 - 0.40 1145hrs rootlets. (MADE GROUND/REWORKED NATURAL Vo 0.6 0.20 - 0.40 1ES DEPOSITS) 0.50 4.90 2B 0.60 - 0.80Vo 1.1 0.60 - 0.80 Stiff orangish brown mottled grey CLAY. Frequent rootlets 2FS 3В 1.00 - 1.20 and relict rootlets. 0.90 4.50 Vo 0.9 3ES 1.00 - 1.20 Soft grey mottled brownish grey CLAY. Rare rootlets. 4D 1.20 - 1.73 Nil S 4 Soft brown slightly sandy slightly gravelly CLAY with 5L 1.20 - 2.20 frequently pockets (up to 20mm) of greenish brown and grey fine sand and silt. Gravel is subangular and subrounded fine to coarse sandstone, quartz and 6D 1.70 - 1.80 siltstone 2.05 3.35 1.90 - 2.05m: Abundant partially decomposed root fragments (up to 20mm diam). 0.0 10/06/19 7UT 2.20 - 2.65Nil Medium dense to dense brownish red locally slightly 1620hrs 91 220 - 320sandy clayey subangular to rounded fine to coarse 1.60m sandstone, siltstone and mudstone GRAVEL 11/06/19 8D S 30 2.65 - 3.10 Nil 2.05m; Band (20mm) of vellowish brown fine sand. 1 00m 2.80m: Subrounded sandstone cobble. 3.20 2.20 3.20 - 3.653.20 S 11 101 3.20 - 4.20Firm reddish brown slightly sandy slightly gravelly CLAY with frequent pockets (up to 10mm) of greenish grey fine sand and silt. Gravel is subangular and subrounded fine rarely medium sandstone, siltstone and quartz. 3.50 - 3.60m: Brown gravelly fine sand. Gravel is 11D 3.90 - 4.00subangular fine sandstone. **12UT** 4.20 - 4.65 4.20 4.20 - 4.55m: Very gravelly. 4.20 - 5.20 14L 13D 4.65 - 4.97 4.20 S*88 4.70 - 5.00m: Recovered as slightly clayey subangular fine 15D 5.10 - 5.20 to coarse mudstone gravel. 5.20 0.20 16D 5.20 - 5.53 5.20 S*86 80 0 0 17C 5.20 - 6.70 Very stiff reddish brown gravelly CLAY with frequent pockets (up to 60mm) of greenish grey silt. Gravel is subangular fine to coarse lithorelicts of very weak 5.80 -0.40mudstone. NI 20 40 Extremely weak reddish brown MUDSTONE. Fractures are 10° and subvertical intersecting very closely spaced undulating rough. 6.50 -1.10 6.10 - 6.20m: Disintegrated to stiff gravelly clay. NI 6.15m: 10° band (10mm) of light grey silt. 6.70 - 6.89 5.20 C*231 40 140 100 21 0 18C 6.70 - 8.20 Very weak to weak dark reddish brown fine SANDSTONE with frequent dark green reduction spots (up to 50mm). Fractures are subhorizontal very closely and closely spaced undulating smooth. 6.90 - 7.20m: Subvertical undulating rough fracture. 7.60 -2.20 7.15 - 7.45m: 80° undulating smooth fracture. 7.45 - 7.60m: Subvertical planar smooth fracture 60 90 11/06/19 1815hrs

EQUIPMENT: Geotechnical Pioneer rig.

METHOD: Hand dug inspection pit 0.00-1.20m. Dynamic sampled (128mm) 1.20-5.20m. Waterflush rotary core drilled (146mm) 5.20-8.20m. CASING: 168mm diam to 5.20m.

BACKFILL: On completion, backfilled with bentonite pellets 8.20-8.00m. A slotted standpipe (50mm) was installed to 8.00m, granular response zone 8.00-6.70m, bentonite seal 6.70-2.00m. A second slotted standpipe (19mm) was installed to 2.00m, granular response zone 2.00-0.30m, bentonite seal 0.30-0.10m, concrete and raised cover 0.10-0.00m.

Continued Next Page

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

water strike (m) casing (m) rose to (m) time to rise (min) remarks
1.65 Nil 1.60 20 Seepage CONTRACT
35338 CT

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 2 of 2

Start Date 10 June 2019 324710.6 Easting

Scale Denth 8 20 m

							J									
End Date	11	June :	2019			North	ning	18	1410.9	Ground le	evel	5.40mO	D	Depth		8.20 m
progress date/time water depth	sample no & type	depth from	to	casing depth (m)	type &	samp. /core range	If	instru -ment		de	escription			depth (m)	reduced level (m)	legend
water depth 1.20m		8.20 -	8.41	5.20	C*200		rem	arks	pocket (up subhorizor closely spa	weak reddish b to 30mm) of light and subver aced planar sm completed at 8.3	ght grey sil tical interso nooth and r	t. Fractures ecting very	th rare are closely and	{18.00}	-2.80	CKED
												ALC:	353	38	l c	T

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:05 AM

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BHU.

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 1 of 2

Start Date 11 June 2019

Easting 325105.0

Scale

End Date 12 June 2019 Northing 181498.2 Ground level 5.10mOD Depth 12.80 m

progress date/time	sample no &	depth (m)	casing	test type &	samp.	If	instru -ment	description	depth (m)	reduced level	legend
water depth	type	from to	(m)	value	range				,	(m)	
11/06/19 1000hrs	1B 1ES	0.30 - 0.50 0.30 - 0.50		Vo 0.4				Crop over firm brown slightly sandy CLAY. Frequent rootlets. (MADE GROUND/REWORKED NATURAL DEPOSITS)	0.20	4.90	
	2B 2ES 3B	0.60 - 0.80 0.60 - 0.80 1.00 - 1.20	-	Vo 0.1				Stiff brownish grey mottled orangish brown CLAY. Frequent rootlets.	0.95	4.15	
	3ES 4D 5L	1.00 - 1.20 1.20 - 1.65 1.20 - 2.20	Nil	Vo 0 S <1	-			\(\cdot 0.60m:\) Becoming firm. Soft to firm light brownish grey CLAY with frequent pockets (up to 100mm) of firm dark brown fibrous peat.	1.20	3.90	
			-					Very soft grey CLAY with abundant partially decomposed root fragments (up to 15mm diam) and pockets of organic	-		
	6D	1.70 - 1.80 1.80 1.90	-	H 13 H 9				material (up to 10mm).	-		
	7UT 10L	2.20 - 2.65 2.20 - 3.30	Nil						- - -	- - -	
	8D 9D	2.65 - 2.80 2.80 - 3.25	- Nil	S 2				2.55 - 2.85m: Brownish grey. Silty becoming sandy.	2.90	2.20	
	11D 12D 13L	3.10 - 3.20 3.30 - 3.75 3.30 - 4.30	3.15	S 2				Very soft reddish brown slightly sandy slightly gravelly CLAY with frequent pockets (up to 40mm) of yellowish green fine sand. Gravel is subangular and subrounded fine and medium sandstone, siltstone and mudstone.	3.45	1.65	
			-					Very loose brown locally clayey fine and medium SAND.	-		
	14D UT 15D 16D	3.90 - 4.00 4.30 - 4.50 4.30 - 4.50 4.50 - 4.95	4.15	S 15	1			4.00 - 4.30m: Slightly gravelly. Gravel is subrounded and rounded fine and medium sandstone and siltstone.	- - - -	-	
	17L	4.50 - 5.30	4.13	3 13				4.50m: Medium dense.	-		
	18D 19D 20L	5.20 - 5.30 5.30 - 5.75 5.30 - 6.80	5.15 5.30	S 8					-	0.40	
	ZOL	3.30 - 0.00	5.50			NA		Firm becoming stiff brownish red locally slightly sandy slightly gravelly CLAY with frequent pockets (up to 10mm)	5.50	-0.40	
	21D	6.20 - 6.30	-	H 94				of yellowish green, red and brown fine sand and silt. Gravel is subrounded and rounded fine and medium sandstone and quartz.	-	-	
11/06/19 1700hrs 1.00m	22D	6.35 6.50 6.80 - 7.25	6.80	H 84 H 86 S 16					=		
12/06/19 0830hrs 1.00m	23C	6.80 - 8.30			97 0 0	NA			7.15	-2.05	400
	24D	7.50 - 7.60	-			INA		Stiff locally firm brownish red slightly gravelly silty CLAY. Gravel is subangular fine and medium lithorelicts of very weak mudstone.	-	-	
			Ė E								 - - -
								Continued Next Page	{8.00}		

EQUIPMENT: Geotechnical Pioneer rig.

METHOD: Hand dug inspection pit 0.00-1.20m. Dynamic sampled (128mm) 1.20-6.80m. Waterflush rotary core drilled (146mm) 6.80-12.80m. CASING: 168mm diam to 6.80m.

BACKFILL: On completion, borehole backfilled with bentonite pellets 12.80-5.00m. A slotted standpipe (50mm) was installed to 5.00m, granular response zone 5.00-4.00m, bentonite seal 4.00-2.00m. A second slotted standpipe (19mm) was installed to 2.00m, granular response zone 2.00-0.50m, bentonite seal 0.50-0.30m, gravel drainage 0.30-0.20m, concrete and raised cover 0.20-0.00m.

REMARKS: Driller notes flush returns reduced between 9.80 to 10.40m (approx. 60% returned) and flush returns lost from 10.40 to 12.80m.

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

water strike (m) casing (m) rose to (m) time to rise (min) remarks 1.20 Nil

AGS

35338

CHECKED CT

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:06 AM

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BHUZ

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 2 of 2

Start Date 11 June 2019

Easting 325105.0

-

Scale

35338

CT

5.10mOD **End Date** 12 June 2019 Northing 181498.2 Ground level Depth 12.80 m depth reduced legend progress sample depth (m) casing test samp instru type & level date/time /core I_f -ment description (m) no & depth water depth value (m) type from to (m) range 7.90 - 8.30m: Tending to extremely weak mudstone. 25D 8.30 - 8.70 6.80 S*60 8.00m: Pocket (60mm) of greenish grey silt. 99 5 0 8.30 - 9.80 8.25 - 8.30m: Greenish grey siltstone. 27D 8.80 - 8.90 8.90 - 9.00m: Extremely weak reddish brown with green 9.10 -4.00 reduction spots (up to 20mm) mudstone Very stiff reddish brown mottled purple and light greenish grey gravelly CLAY tending to extremely weak mudstone. 28D 9.70 - 9.80 Gravel is subangular and subrounded fine and medium 6.80 S*130 29D 9.80 - 10.05 100 0 0 sandstone and lithorelicts of extremely weak mudstone. 9.80 - 10.40 30C 60 0 0 10.40 - 10.90 31C 10.40 - 10.90m: 70° very closely spaced thin beds of purplish grey siltstone. 32D 10.70 - 10.80 55 0 0 33C 10.90 - 11.30 10.90 - 11.30m: Sandy. 6.80 C*167 11.30 - 11.48 100 34C 11.30 - 12.80 11.75 - 12.20m: Frequent pockets (up to 80mm) of light 35D 11.80 - 11.90 grey silt. 12/06/19 1410hrs 1.10m 36D 12.70 - 12.80 12.80 6.80 C*250 -7.70 12.80 - 12.96 Borehole completed at 12.80m. CONTRACT **CHECKED** water strike (m) casing (m) rose to (m) time to rise (m) AGS

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:07 AM CT

BOREHOLE LOG

End Date

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 1 of 2

Start Date 12 June 2019 324770.7 Easting

1 05

-0.95

4 40

6.40

{8.00}

Scale

5.45mOD

13 June 2019 Northing 180991.2 Ground level Depth 11.00 m progress sample depth (m) test instru depth reduced legend casina samp date/time /core description level no & depth type & Ιf -ment (m) water depth type from to (m) value range (m) 12/06/19 Crop over firm brown slightly sandy CLAY. Frequent 0.20 5.25 1B 0.20 - 0.40 1015hrs rootlets. (MADE GROUND/REWORKED NATURAL 0.20 - 0.40 2D DEPOSITS) 0.55 4.90 3B 0.60 - 0.80 Firm brownish grey mottled orangish brown CLAY. Rare 4D 0.60 - 0.80rootlets 1.00 - 1.20 5B 1.00 4.45 6D 1.00 - 1.20Soft brownish grey mottled brown CLAY. Rare rootlets. Firm brownish grey mottled grey slightly sandy slightly 7UT 1.20 - 1.65 Nil gravelly CLAY with frequent pockets (up to 15mm) of grey, 9L 1.20 - 2.20 yellow and brown fine sand. Gravel is subangular fine to coarse sandstone, siltstone and rare quartz. 8D 1.75 - 2.20 Nil S 7 10D 180 - 190 Nil S 7 2.20 - 2.6511D 12L 2.20 - 3.202.40 - 2.60m: Sandy. 2.60 2.85 13D 2.80 - 2.90 Stiff reddish brown slightly gravelly sandy silty CLAY with H 120 2 90 frequent pockets (up to 15mm) of light grey and brown fine 3.00 H 112 sand. Gravel is subangular and subrounded fine and 3.10 H 114 medium sandstone, siltstone and quartz. 14UT 3.20 - 3.653 20 17L 3.20 - 4.20

18D 3.80 - 3.90 19D 4.20 - 4.65 4.20 S 24 20L 4.20 - 5.00 Very stiff reddish brown gravelly CLAY tending to extremely weak mudstone with frequent pockets (up to 21D 4.80 - 4.90 50mm) of light greenish grey silt. Gravel is subangular fine 22D 5.00 - 5.37 5.00 S*70 and medium lithorelicts of extremely weak mudstone. 93 23C 5.00 - 6.50

NI 130 190

100 45 33

6.10 - 6.20m: Band of light green silt. Very weak reddish brown locally purplish grey and greenish grey MUDSTONE. Fractures are subhorizontal and 70-80° very closely and closely spaced undulating smooth locally infilled (up to 10mm) with clayey subangular fine mudstone gravel.

6.75 - 6.95m: Subvertical planar rough fracture. 7.00 - 7.25m: 80° undulating smooth fracture.

EQUIPMENT: Geotechnical Pioneer rig

15D

16D

24C

25C

3.65 - 3.75

3.75 - 4.20

6.50 - 6.62

6.50 - 7.60

7.60 - 8.00

8.00 - 8.17

3.20 S 23

5.20

C*545

5.20 C*429

METHOD: Hand dug inspection pit 0.00-1.20m. Dynamic sampled (128mm) 1.20-5.00m. Waterflush rotary core drilled (146mm) 5.00-11.00m. CASING: 168mm diam to 5.20m.

BACKFILL: On completion, borehole backfilled with bentonite pellets 11.00-6.00m. A slotted standpipe (50mm) was installed to 6.00m, granular response zone 6.00-4.70m, bentonite seal 4.70-2.00m. A second slotted standpipe (19mm) was installed to 2.00m, granular response zone 2.00-0.30m, bentonite seal 0.30-0.10m, concrete and raised cover 0.10-0.00m.

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

water strike (m) casing (m) rose to (m) time to rise (min) remarks

> Groundwater not encountered prior to use of water flush.

Continued Next Page

CONTRACT 35338

CHECKED CT

35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:08 Geotechnical Engineering Ltd, Tel. 01452 527743

12/06/19

1710hrs 1.20m

 c_{T}

Ā

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 2 of 2

Start Date 12 June 2019 Easting 324770.7

Scale 1:50

Substitute Sub	progress date/time	sample no &	depth (m)	casing depth	test type &		I _f	instru -ment	description	depth (m)	level	legen
27C 9.50 - 11.00				(m)	value						(m)	
27C 9.50 - 11.00	0850hrs	26C	8.00 - 9.50	E		43			7.70 - 7.75m: Recovered non intact as subangular medium and coarse gravel		-	
27C 9.50 - 11.00	1.20m			-					modium and course granem			
27C 9.50 - 11.00				-								
27C 9.50 - 11.00				E]	
27C 9.50 - 11.00				-								
27C 9.50 - 11.00			9 50 - 9 66	5 20	C*545					9.50	-4.05	
		27C		- 0.20	0.0	100 93	140 480		Weak reddish brown locally greenish grey MUDSTONE			
306/19 11.00 - 11.14 5.20 C*462 Borehole completed at 11.00m.				-		93	550		with frequent light green reduction spots (up to 10mm).			
11.00 - 11.14				-					spaced planar rough and undulating smooth.	-		
11.00 - 11.14				E								
11.00 - 11.14	12/06/10			-								
Borehole completed at 11.00m.	1110hrs			-								
(18.00)	2.10m	-	11.00 - 11.14	5.20	C*462				Develope accomplated at 44 00m	11.00_	-5.55	
				-					Borenole completed at 11.00m.			
				-								
				[
				_						_		
				-								
				-								
				F							-	
				_								
				-								
				-								
				[
				-						_		
				-								
				-								
				-								
				_						_		
				-								
				-								
				-								
				_								
				-								
				-							-	
				ļ.							1	
				E						-		
				-							-	
				-							1	
				Ė							1	
				Ė						[40.00]	1	
CONTRACT CHECK	vater strike	(m) casi	ing (m) rose to	(m) ti	me to ris	e (m)	rem	arks	CONT.		CHE	_ ^k=
Groundwater not encountered prior to use of water flush.	TAICI SUINC	viii) Casi	9 (111) 1030 (- (111 <i>)</i> - U	10 113	·~ (111 <i>)</i>			er not encountered prior to use of water			

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BHU4

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 1 of 2

Start Date 13 June 2019

Easting 325194.7

Scale 1 : 50

End Date 14 June 2019 Northing 181245.1 Ground level 5.10mOD Depth 16.00 m

progress date/time	sample no &	depth	` '	casing depth	test type &	samp. /core	I _f	instru -ment	description	depth (m)	level	legend
water depth	type	from	to	(m)	value	range					(m)	
13/06/19 1025hrs	40	0.00	. 50	-					Grass over firm light brown sandy CLAY. Abundant rootlets.	0.10	5.00	
	1B 2D 3B	0.30 - 0 0.30 - 0 0.60 - 0	0.50	_					Stiff brownish grey mottled orangish brown silty CLAY. Rare rootlets.	0.50	4.60	
	4D 5B 6D	0.60 - 0 1.00 - 1 1.00 - 1	0.80 1.20	- - -					Firm becoming soft grey locally mottled orangish brown silty CLAY. Rare rootlets.	1.20	3.90	
	7P	1.20 - 2		- Nil		P/S			Very soft grey mottled brown organic silty CLAY.			×
				_		F/ 3				2.00	3.10	
	8P	2.00 - 2	2.55	2.00		P/S			Very soft bluish grey CLAY.	-		
	9L 10D	2.55 - 2 2.65 - 2		2.00						-		
	11P	2.80 - 3		2.80		P/S				=		
	405	0.00								3.60	1.50	
	12P	3.60 - 4	1.40	3.60		P/S			Firm dark grey slightly clayey pseudo-fibrous PEAT becoming slightly sandy organic silty CLAY. Frequent organic fragments (up to 20mm).	-		/
				-						4.40	0.70	1, -1, \
	13P	4.40 - 5	5.20	- 3.60 - - -		P/S			Firm dark grey clayey pseudo-fibrous PEAT with rare pockets (up to 20mm) of soft bluish grey clay. Frequent organic fragments (up to 20mm).	-		12-4-12 12 12-4-12 12
	14P	5.20 - 6	6.00	- - - 5.20					Soft bluish grey CLAY.	5.20	-0.10	1/-4-1/- 7/
13/06/19				- - -		P/S			Controllation groy of the	-		
1740hrs 2.00m 14/06/19	15D 16L	6.00 - 6 6.00 - 7		6.00	S 36				Dense reddish grey slightly clayey slightly gravelly fine to	6.00	-0.90	,
0900hrs 2.00m				-					coarse SAND. Gravel is subangular and subrounded fine and medium sandstone, siltstone, mudstone and quartz.	6.45	-1.35	,
	17D	6.00	7.00	- -					Dense reddish grey slightly clayey slightly gravelly fine to coarse SAND locally sandy GRAVEL. Gravel is subangular and subrounded fine to coarse sandstone,			,
	18D	6.90 - 7 7.30 - 7	7.40	Ē 	.				siltstone, mudstone and quartz. 6.55 - 6.65m: Band (90mm) of dark grey fine sand with abundant charcoal fragments (up to 20mm).	7.10	-2.00 -2.20	¢
	19D 20L	7.50 - 7 7.50 - 9		7.50	S 15				Stiff dark grey slightly sandy slightly gravelly CLAY. Gravel is subangular and subrounded fine to coarse sandstone.	-	-	x
				_					siltstone, mudstone and quartz. Continued Next Page	{8.00}		× -

EQUIPMENT: Geotechnical Pioneer rig.

METHOD: Hand dug inspection pit 0.00-1.20m. Piston sampled (100mm) 1.20-2.55m and 2.80-6.00m. Dynamic sampled (128mm) 2.55-2.80 and 6.00-9.00m. Waterflush rotary core drilled (146mm) 9.00-11.50m and (116mm) 11.50-16.00m.

CASING: 168mm diam to 9.00m.

BACKFILL: On 17/06/19, borehole backfilled with bentonite pellets 16.00-12.00m. A slotted standpipe (50mm) was installed to 12.00m, granular response zone 12.00-11.00m, bentonite seal 11.00-6.00m. A second slotted standpipe (19mm) was installed to 6.00m, granular response zone 6.00-0.50m, bentonite seal 0.50-0.30m, concrete and raised cover 0.30-0.00m.

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

water strike (m) casing (m) rose to (m) time to rise (min) remarks
1.20 Nil 1.10 20 Seepage encountered in inspection pit.

CHECKED
35338 CT

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:10 JP

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 2 of 2

Start Date 13 June 2019 325194.7 Scale 1:50 Easting

End Date	14	June 2019			North	hing	18	1245.1 Ground level 5.10mOD	Depth	10	6.00 m
progress date/time water depth	sample no & type	depth (m)	casing depth (m)	test type & value	samp. /core range	I _f	instru -ment	description	depth (m)	reduced level (m)	legend
	21D 22C	8.40 - 8.50 9.00 - 10.00	- - - - - - - - - - - - - - - - - - -		100			Stiff reddish brown slightly sandy slightly gravelly silty CLAY. Gravel is subrounded and rounded fine and medium mudstone, sandstone and siltstone. 7.45 - 7.50m: Subangular sandstone cobble.	- - - - - - - - - -		X
	23D 24D 25C 26D	9.40 - 9.50 10.00 - 10.45 10.00 - 11.50 10.40 - 10.50	-	S 27	100			Stiff to very stiff reddish brown locally mottled purplish grey slightly sandy slightly gravelly CLAY tending to extremely weak mudstone with rare greenish grey reduction spots (up to 40mm). Gravel is subangular and subrounded fine mudstone lithorelicts.	9.80 =	-4.70	×
	27D 28C	11.50 - 11.72 11.50 - 13.00		S*222	100						
	29D	12.20 - 12.30 13.00 - 13.07	- - - -	C*500				12.25 - 12.55m: Mottled greenish grey.			
	30C	13.00 - 14.30	- - - - - - - - -		100 91 19	NI 80 170		Very weak and weak reddish brown MUDSTONE with rare greenish grey reduction spots (up to 20mm). Fractures are subhorizontal and 80° very closely and closely spaced undulating rough.	13.10	-8.00	7 7 7
14/06/19	C 31C	14.30 - 14.41 14.30 - 14.50 14.50 - 16.00	E	C*429	0 93 . 77 69	NI 120 330 50 100 100		13.90 - 13.95m: Subhorizontal fracture infilled (up to 20mm) with very stiff reddish brown clay. Weak light reddish brown locally greenish grey MUDSTONE. Fractures are subhorizontal and 80° closely and medium spaced undulating and rough. 14.35 - 14.60m: Medium strong dark reddish brown fine sandstone. Fractures are subhorizontal and 50° very closely spaced planar smooth. 14.60m: 30mm bed of greenish grey silt.	14.20	-9.10	
1640hrs 1.70m		16.00 - 16.11	9.00	C*462				Borehole completed at 16.00m.	16.00	-10.90	
wotor stall-	(m)	ing (m)	- (m) "	mo to =:-	20 (52)	nc	orks		{18.00}	OUE.	
water strike	(III) Cas	ing (m) rose t	o (m) ti	me to ris	e (III)	rem See		ncountered in inspection pit. CONTF			CKED T

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:10 JP

25 June 2019

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

рпиз

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 1 of 3

Start Date 21 June 2019

End Date

Easting 324910.2

Northing

180752.9 Ground level

Depth 21.70 m

Scale

5.50mOD

progress date/time	sample no &	depth ((m)	casing	test type &	samp. /core	lf	instru -ment	description	depth (m)	reduced level	legend
water depth	type	from	to	(m)	value	range	·Τ	-1116111	description	(111)	(m)	
21/06/19	.,,,,,			()	74.40	rungo			0 5 1 31 01 01 6		. ,	- -
1020hrs	1B	0.20 - 0.	.40	F					Grass over firm brown silty CLAY. Frequent rootlets.	0.20	5.30	
	2D	0.20 - 0.	.40	F					Firm grey mottled brown and light grey CLAY with frequent	-		<u> </u>
	3B	0.60 - 0.		F					pockets (up to 5mm) of orangish brown fine sand. Frequent rootlets.	-		
	4D 5B	0.60 - 0. 1.00 - 1.		F					riequentioodets.	0.95	4.55	
	6D	1.00 - 1.		F					Firm dark brown silty locally fibrous PEAT with frequent	-		<u> </u>
	7D	1.20 - 1.		Nil	S 3	\vdash			wood fragments (up to 60mm).	1.20	4.30	
	8L	1.20 - 2.	.20	F				H.	Very soft yellowish brown and greenish brown silty CLAY.	-		
				F				H		1.60	3.90	=
		1.85		F	H 52			Ħ	Firm brown and reddish brown slightly gravelly sandy	-		<u> </u>
	9D	2.00 - 2.	.10	_	1102				CLAY with rare pockets (up to 30mm) of grey silt. Gravel is subangular to rounded fine and medium sandstone and	_		
	10D	2.20 - 2.		Nil	S 9	\vdash			siltstone.	-		
	11L	2.20 - 3.	.20	Ė						2.50	3.00	
				Ė					Soft reddish brown very sandy CLAY with frequent	2.00	0.00	
				-					pockets (up to 20mm) of grey silt, locally slightly sandy	-		
		3.00		_	H 24				clayey SILT.	_		
	12D	3.00 - 3.		-						-		$\vdash = \vdash$
	13UT	3.20 - 3.		3.20						_		
	16L	3.20 - 4.	.20	L						3.65	1.85	
	14D	3.65 - 3.		2 20	C*C0	-			Very dense dark reddish brown slightly clayey sandy] =		0.00
	15D 17D	3.75 - 4. 4.00 - 4.		3.20	S*60			<u>H.</u>	subangular fine and medium micaceous sandstone	4.10	1.40	.0.0.0
	5	4.20 - 4.		4.20	C**		NA		∖GRAVEL.	1]		
	18C	4.20 - 5.	.20	L		100 51 0	20		Very stiff reddish brown gravelly CLAY tending to	4.35 –	1.15	
				L		0	20 40 90		extremely weak mudstone. Gravel is subangular fine to coarse lithorelicts of extremely weak mudstone.	_		• • • •
				L			00		Weak purplish brown with frequent green bands (up to	_		: : : :
									10mm) medium SANDSTONE. Fractures are 10-20° very	5.00_	0.50	
		5.20 - 5.	.40	4.20	C*300		NA		closely and closely spaced planar smooth.	_		
	19C	5.20 - 6.	.70	L		99 8 0			4.35 - 4.65m: 80° undulating smooth fracture. 4.75 - 4.80m: 45° planar smooth fracture.	_		
				E		0			4.85m: Band (5mm) of light grey silt.	5.65	-0.15	<u> </u>
				E			NI 30 50		Very stiff reddish brown gravelly CLAY tending to	1		
				L			50		extremely weak mudstone with frequent pockets (up to	-		
				E					60mm) of light green silt. Gravel is subangular fine and	-		
21/06/19				E					medium lithorelicts of very weak mudstone.	-		
1600hrs 1.20m				Ł					Extremely weak reddish brown MUDSTONE locally	0.70	4.00	
24/06/19	20C	6.70 - 6. 6.70 - 8.		⊢ 4.20	C*462	99	NI		recovered non intact as subangular fine and medium gravel. Fractures are subhorizontal to 10° very closely	6.70	-1.20	
0840hrs	200	0.70 - 8.	.20	Ł		14	NI 30		spaced undulating smooth.	-		
1.30m				F_		[6.00 - 6.10m: Extremely weak light green siltstone	-		
				F					recovered non intact as subangular fine and medium gravel.	=		
				F			30		6.10 - 6.70m: Locally disintegrated to very stiff gravelly	7.50	-2.00	
				F			30 110 170		clay.	-		
				F			.,,			=		
									Continued Next Page	{8.00}		

EQUIPMENT: Geotechnical Pioneer rig.

METHOD: Hand dug inspection pit 0.00-1.20m. Dynamic sampled (128mm) 1.20-4.20m. Waterflush rotary core drilled (116mm) 4.20-21.70m. CASING: 168mm diam to 4.20m.

BACKFILL: On completion, borehole backfilled with bentonite pellets 21.70-4.00m. A slotted standpipe (50mm) was installed to 4.00m, granular response zone 4.00-2.70m, bentonite seal 2.70-1.50m. A second slotted standpipe (19mm) was installed to 1.50m, granular response zone 1.50-0.50m, bentonite seal 0.50-0.30m, concrete and raised cover 0.30-0.00m.

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

water strike (m) casing (m) rose to (m) time to rise (min) remarks

1.65 Nil 1.00 20 Very Slow

CHECKED

35338 CT

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 2 of 3

CT

Start Date 21 June 2019 Easting 324910.2

Scale

25 June 2019 **End Date** Northing 180752.9 Ground level 5.50mOD Depth 21.70 m reduced legend progress sample depth (m) casing test instru depth samp date/time type & /core I_f description (m) level no & depth -ment water depth type from to (m) value range (m) Very weak and weak reddish brown MUDSTONE locally 8.20 - 8.33 C*600 100 67 43 recovered non intact as clayey subangular fine to coarse 21C 8.20 - 9.70 gravel with frequent pockets (up to 50mm) of greenish grey silt. Fractures are subhorizontal and subvertical extremely closely and very closely spaced planar smooth. Weak reddish brown MUDSTONE locally disintegrated to very stiff gravelly clay. Fractures are subhorizontal and 9.25 -3.75 40° very closely and closely spaced undulating smooth. 20 60 130 7.75 - 8.00m: Very stiff reddish brown and light green sandy clay. 9.70 - 9.87 4.20 C*462 8.00 - 8.50m: Locally mottled purplish grey. 90 45 14 22C 9.70 - 11.20 Weak reddish brown locally micaceous fine SANDSTONE. Fractures are subhorizontal to 10° very closely and closely spaced planar smooth. 10.50 -5.00 Very weak reddish brown MUDSTONE. Fractures are 60 subhorizontal and 45° very closely and closely spaced 10.90m: Fracture infilled (30mm) with soft reddish brown 4.20 C*600 11.20 - 11.32 clay. 80 13 8 23C 11.20 - 12.70 11.75 -6.25 NI Extremely weak reddish brown locally purplish grey and green MUDSTONE recovered as clayey subangular fine to coarse gravel. 4.20 C*600 12.70 - 12.83 24C 12.70 - 14.20 13.00_ -7.50 NI 70 220 Very weak and weak reddish brown locally purplish grey MUDSTONE frequently disintegrated to clayey subangular fine and medium gravel. Fractures are subhorizontal closely and medium spaced undulating smooth. 13.15 - 13.25m: 45° planar smooth fracture. 14.00 - 14.10m: Frequent pockets (up to 10mm) of 14.20 - 14.29 4.20 C*750 100 50 28 greenish grey silt. 25C 14.20 - 15.70 14.45 - 14.50m: 45° planar smooth fracture. 70 28 21 26C 14.70 - 15.70 C** 15 70 - 15 78 4 20 93 31 31 27C 15.70 - 17.20 16.10 - 16.95m: Non intact. Recovered as clayey subangular fine and medium gravel. 24/06/19 1640hrs 2.20m 16.95 --11.45 Weak to medium strong reddish brown locally green fine 17.20 - 17.32 4.20 C*750 SANDSTONE. Fractures are subhorizontal closely and 25/06/19 28C 17.20 - 18.70 0845hrs 1.30m medium spaced planar smooth. 17.50 - 17.65m: Fractures are 45° very closely spaced planar smooth. Continued Next Page {18.00} AGS CONTRACT CHECKED water strike (m) casing (m) rose to (m) time to rise (m) 35338

35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:13 AM Geotechnical Engineering Ltd, Tel. 01452 527743

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BH02

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 3 of 3

35338

CT

Start Date 21 June 2019 Easting 324910.2 Scale 1 : 50

5.50mOD **End Date** 25 June 2019 Northing 180752.9 Ground level Depth 21.70 m depth reduced legend progress sample depth (m) casing test samp instru type & description level date/time depth /core I_f -ment (m) no & water depth value type from to (m) range (m) 18.10 -12.60 Very weak reddish brown MUDSTONE. Fractures are subhorizontal very closely and closely spaced undulating 18.70 - 18.84 4.20 C*667 18.40 - 18.50m: Stiff reddish brown gravelly clay. Gravel is 29C 18.70 - 20.20 subangular fine and medium lithorelicts of extremely weak 18.95 -13.45 mudstone. 180 270 410 Very weak and weak reddish brown with frequent green reduction spots (up to 30mm) MUDSTONE. Fractures are subhorizontal to 10° closely and medium spaced planar rough. 30Cs 19.70 - 20.00 4.20 C*429 20.00 - 20.20m: Disintegrated to clayey subangular fine 20.20 - 20.31 77 60 60 and medium gravel. 31C 20.20 - 21.70 25/06/19 1250hrs 2.00m 21.50 - 21.70m: Disintegrated to green and reddish brown 21.70 - 21.81 4.20 C*462 21.70 -16.20 clayey subangular fine and medium gravel. Borehole completed at 21.70m. {28.00} CONTRACT **CHECKED** water strike (m) casing (m) rose to (m) time to rise (m)

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:13 AM

17 June 2019

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BHU

12.60 m

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 1 of 2

Start Date 13 June 2019

End Date

Easting 324981.4

181079.3

Ground level

5.30mOD

Northing

Scale 1:50

Depth

{8.00}

CHECKED

CT

progress sample depth (m) casing test instru depth reduced legend samp date/time /core description level no & depth type & Ιf -ment (m) water depth type from (m) value range (m) 13/06/19 5.20 0.10 Crop over firm brown silty CLAY. Frequent rootlets 1550hrs 0.20 - 0.40 1B (MADE GROUND/REWORKED NATURAL DEPOSITS) 2D 0.20 - 0.40 0.55 4.75 Firm brown locally mottled greyish brown CLAY. Rare 3B 0.60 - 0.80rootlets 0.60 - 0.80 4D 1.00 - 1.20 13/06/19 5B Firm brownish grey mottled grey CLAY. 1630hrs 6D 1.00 - 1.20 Dry 1.20 4.10 14/06/19 7UT 1.20 - 1.65 Nil Very soft bluish grey CLAY. 0820hrs 10L 1.20 - 2.20 Dry 8D 1.65 - 1.75 Nil S <1 1.75 - 2.20 9D 1.85 3.45 11D 1.90 - 2.00 Very soft light brown sandy CLAY with rare pockets (up to H 11 2 05 15mm) of light brown coarse sand. Frequent root fragments (up to 15mm diam). 12P 2.20 - 2.55Nil 2.40 2.90 PIS 141 2.20 - 3.20Firm light brown becoming reddish brown slightly gravelly H 20 2 45 sandy CLAY with frequent pockets (up to 10mm) of yellow 13D Nil S 11 2.55 - 3.00and grey fine sand. Gravel is subangular fine and medium sandstone and mudstone. 15D 2.90 - 3.003.20 - 3.65 3.20 S 16 16D 3.30 2.00 17I 3.20 - 4.10Stiff becoming very stiff reddish brown slightly sandy slightly gravelly CLAY. Gravel is subangular fine and medium lithorelicts of extremely weak mudstone. 3 85 H Re* 3.40 - 3.50m: Frequent pockets (up to 5mm) of light green 18D 3.90 - 4.00H 110 silt. 19D 4.10 - 4.38 3.20 S*97 NΑ 3.90 - 4.00m: Rare pockets (up to 5mm) of light green silt. 20C 4.10 - 5.10 4.50 0.80 NI Weak and medium strong dark reddish brown MUDSTONE, Fractures are subhorizontal and subvertical intersecting very closely spaced undulating smooth. 5.10 - 5.33 3.20 C*400 4.50 - 4.90m: 80° fracture stained greenish brown. 67 3 0 NR 21C 5.10 - 6.60 5.05m: Band (2mm) of green silt. 5.10 - 5.60m: Assessed zone of core loss. 5.70 -0.40NΑ 5.70m: Band (5mm) of green silt. Very stiff reddish brown gravelly CLAY tending to extremely weak mudstone. Gravel is subangular fine and medium lithorelicts of extremely weak mudstone. 6.40 -1.10 NI 170 240 6.35m: Pocket (80mm) of green gravelly silt. Gravel is 6.60 - 6.97 3.20 C*140 91 54 40 subangular fine siltstone 22C 6.60 - 8.10Very weak becoming weak reddish brown mottled purplish grey MUDSTONE with frequent light green reduction spots (up to 100mm). Fractures are 10-20° closely and medium spaced undulating smooth and rough. 7.20 - 7.40m: Subvertical undulating rough fracture stained greenish brown. 7.65 - 7.75m: 50° undulating smooth fracture.

EQUIPMENT: Geotechnical Pioneer rig.

METHOD: Hand dug inspection pit 0.00-1.20m. Dynamic sampled (128mm) 1.20-4.10m. Waterflush rotary core drilled (146mm) 4.10-12.60m. CASING: 168mm diam to 3.20m.

BACKFILL: On completion, borehole backfilled with bentonite pellets 12.60-5.00m. A slotted standpipe (50mm) was installed to 5.00m, granular response zone 5.00-3.70m, bentonite seal 3.70-2.50m. A second slotted standpipe (19mm) was installed to 2.50m, granular response zone 2.50-0.30m, bentonite seal 0.30-0.10m, concrete and raised cover 0.10-0.00m.

Continued Next Page

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

water strike (m) casing (m) rose to (m) time to rise (min) remarks
2.20 Nil 1.60 20 Encountered following run 1.20-2.20m.

35338

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:15 AM

17 June 2019

BOREHOLE LOG

End Date

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

12.60 m

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Northing

Sheet 2 of 2

Start Date 13 June 2019 324981.4 Easting

Scale 1:50

Depth

5.30mOD

depth reduced legend progress sample depth (m) casing test samp instru date/time /core description level no & depth type & I_f -ment (m) water depth value range (m) type from (m) 8.10 - 8.22 3.20 C*667 8.00m: Pocket (50mm) of light green silt. 95 57 38 23C 8.10 - 9.20 8.50 -3.20 NI 60 120 Very weak and weak reddish brown MUDSTONE with rare green reduction spots (up to 15mm). Fractures are subhorizontal very closely and closely spaced undulating smooth and rough. 14/06/19 1625hrs 8.70 - 8.80m: 45° fracture. 58 53 0 24C 9.20 - 9.60 8.90 - 9.10m: Subvertical fracture. 1.40m 9.60 - 9.88 3.20 C*231 9.40 - 9.60m: Frequent green reduction spots (up to

181079.3

Ground level

								3533			
water strike	(m) cas	ing (m) rose to	o (m) ti	me to ris	e (m)	rema	arks	AGS CONTR		CHE	CKED
atau atelli-	(in = (ma) = = = +=	. () +:		- /ma`			TIL CONTR		OLIE	
									{18.00}		
Ì			F								
			F								
			-								
			-								
			-						=		
			_]		
			-								
			-								
			_]		
			-								
			-								
]		
			_						-		
			-						-		
]		
			-								
			-]		
			-								
			_						_		
]		
			-								
								Borehole completed at 12.60m.			
2.00m	-	12.60 - 12.73	3.20	C*545				12.35 - 12.50m: Extremely weak. 80° planar smooth fracture.	12.60	-7.30	
17/06/19 1130hrs			E					5mm). 60° fracture stained dark grey.			
			-					11.90 - 12.10m: Frequent green reduction spots (up to			
								11.30 - 11.55m: 45° fracture stained dark grey. 11.60 - 11.95m: 60° fracture stained dark grey.			
			_			420		Fractures are subhorizontal closely and medium spaced planar smooth.	-		
	26C	11.10 - 12.60			100 69 67	240 400 420		Weak to medium strong reddish brown MUDSTONE.			
		11.10 - 11.20	3.20	C**	100			10.70 - 11.00m: Subvertical undulating rough fracture.	11.20	-5.90	
			_					10.40 - 10.50m: 45° planar rough fracture. 10.60 - 10.65m: Disintegrated to firm gravelly clay.	_		
								greenish brown.]		
								rough. 10.20 - 10.40m: 50° undulating smooth fracture stained	\exists		
			-			NI 60 200		20° very closely and closely spaced planar smooth and			
1.60m			_		100 49 25	NI		Very weak dark reddish brown MUDSTONE. Fractures are	9.90	-4.60	
0920hrs											

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 1 of 3

Start Date 21 June 2019

Easting 325376.8 Scale 1:50

End Date 26 June 2019 Northing

180861.4 Ground level

5.05mOD

Depth 26.20 m

progress date/time	sample no &	dept	h (m)	casing	test	samp.	l,	instru -ment	description	depth	reduced level	legen
water depth	I .	from	to	depth (m)	type & value	/core range	If	-ment	description	(m)	(m)	
21/06/19 1000hrs				-				<u> </u>	Grass over soft dark brown clayey SILT. Abundant rootlets and rare roots (up to 5mm diam).	0.15	4.90	x
	1B 2D 3B 4D 5B	0.30 - 0.30 - 0.60 - 0.60 - 1.00 -	0.50 0.80 0.80	- - - - -					Firm light grey mottled brownish grey and orangish brown slightly sandy CLAY with frequent pockets (up to 10mm) of orangish brown and light grey fine sand. Frequent roots (up to 15mm diam) and rootlets.	0.90	4.15	
	6D 7P	1.00 - 1.20 -		Nil		P/S			Soft grey mottled brownish grey and light bluish grey slightly sandy CLAY with frequent pockets (up to 7mm) of orangish brown sand and rare pockets (up to 5mm) of purplish grey clay. Frequent rootlets.	- - - - -		
	8P	2.00 -	2.80	- Nil - Nil -		P/S			Very soft light grey and bluish grey slightly sandy slightly gravelly peaty CLAY with frequent pockets (up to 80mm) of firm dark brown clayey peat. Gravel is subrounded fine quartz.	- - - - - -		7-0-
	9P	2.80 -	3.30	2.80		P/S		9 H33 3 H33 3 H33 3 H33		- - -		
	10L	3.20 3.30 -	3.60	2.80	H 10					-		
	11P	3.60 -	4.40	2.80		P/S				- - - - -		
	12P	4.40 -	4.70	4.40		P/S				- - -		
	13L	4.70 -	5.20	4.20						- - -	-	
	14P	5.20 -	6.00	5.20		P/S				- - - - - -		
21/06/19	15P	6.00 -	6.80	6.00		P/S				- - - - - -		2 0
1640hrs 1.20m 24/06/19 0900hrs	16L	6.80 -	7.45	6.80					Soft bluish grey CLAY.	6.80	-1.75	-
0.50m	17L	7.45 -	8.30	6.80					7.20 - 7.45m: Subangular quartzite cobble encountered at and of run.	7.45	-2.40	
		7.40	5.00	5.55					Stiff reddish brown slightly sandy gravelly CLAY. Gravel is subangular and subrounded fine to coarse sandstone and	7.80	-2.75	
								' '	Continued Next Page	{8.00}	1	

EQUIPMENT: Geotechnical Pioneer rig.

METHOD: Hand dug inspection pit 0.00-1.20m. Piston sampled (100mm) 1.20-3.30m, 3.60-4.70m and 5.20-6.80m. Dynamic sampled (128mm) 3.30-3.60m, $4.70\mbox{-}5.20\mbox{m}$ and $6.80\mbox{-}9.70\mbox{m}$. Waterflush rotary core drilled (116mm) $9.70\mbox{-}26.20\mbox{m}$.

CASING: 168mm diam to 9.70m.

BACKFILL: On completion borehole backfilled with bentonite 26.20-11.50m. A slotted standpipe (50mm) was installed to 11.50m, granular response zone 11.50-10.50m, bentonite seal 10.50-7.00m. A second slotted standpipe (19mm) was installed to 7.00m, granular response zone 7.00-0.50m, bentonite seal 0.50-0.30m, gravel drain 0.30-0.20m, concrete and raised cover 0.20-0.00m.

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

water strike (m) casing (m) rose to (m) time to rise (min) remarks AGS CONTRACT CHECKED 2.00 1.20 Slow 35338 CT

35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:17 LP+JP Geotechnical Engineering Ltd, Tel. 01452 527743

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 2 of 3

Start Date 21 June 2019 Easting 325376.8 Scale 1:50

End Date	26	June 2019			North	ning	18	0861.4 Ground level	5.05mOD Dep	th 2	6.20 m
progress date/time water depth	sample no & type	depth (m) from to	casing depth (m)	test type & value	samp. /core range	If	instru -ment	description	dept (m)		legend
	18D 19D 20L	8.10 - 8.20 8.30 - 8.75 8.30 - 9.70	8.30	S 28				quartz. Stiff to very stiff reddish brown slightl	y sandy CLAY.	-	
	21D 22D 23C	9.30 - 9.40 9.70 - 10.05 9.70 - 11.20	9.70	S*150	100 51 16			9.10 - 9.20m: Greenish grey silty fine			
	24C	11.20 - 11.30 11.20 - 12.70	9.70	C*600	97 90 52	NI 70 400		Extremely weak to very weak reddish medium SANDSTONE. Fractures are closely and medium spaced planar in 10.40 - 10.50m: Subvertical undulatin 10.85 - 10.90m: Subvertical undulatin 11.05 - 11.10m: Subvertical undulatin 11.05 - 11.25m: Greenish grey. 11.20 - 11.40m: Subvertical planar in	e subhorizontal bugh. ng rough fracture. ng rough fracture. ng rough fracture.	05.15	
	25C	12.70 - 13.10 12.70 - 14.20	9.70	C*120	100 80 80	NI 520 950		Very weak to weak thinly laminated r greenish grey MUDSTONE. Fracture widely spaced 20° planar smooth.	eddish brown locally s are medium and	07.45	
24/06/19 1650hrs 0.80m 25/06/19 0940hrs 0.80m	26C 27Cs	14.20 - 14.36 14.20 - 15.70 14.45 - 14.75	9.70	C**	100 97 93						
	28C	15.70 - 15.93 15.70 - 17.20	_	C*200	100 85 61	NI 100 290		Very weak to weak dark reddish brow grey fine SANDSTONE. Fractures ar medium spaced planar rough.		0 -10.35	
	29C	17.20 - 17.28 17.20 - 18.70	9.70	C**	99 92 92			16.45 - 16.70m: Subvertical planar ro	ough fracture.	012.65	
	()		- (Continued Next Page	{18.0		01/55
water strike	(m) casi	ng (m) rose t	o (m) ti	me to ris	se (m)	rema	arks		CONTRACT 35338		CKED CT

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:17 LP+JP

СТ

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BH07

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 3 of 3

Start Date 21 June 2019 Easting 325376.8

Scale 1:50

End Date 26 June 2019 Northing 180861.4 Ground level 5.05mOD Depth 26.20 m

End Date	26	June 2019			Nort	hing	18	0861.4 Ground level 5.05mOD	Depth	2	6.20 m
progress date/time water depth	sample no & type	depth (m)	casing depth (m)	test type & value	samp. /core range	If	instru -ment	description	depth (m)	reduced level (m)	legend
	30C 31Cs	18.70 - 18.78 18.70 - 20.20 18.85 - 19.15	9.70	C**	100 85 72	NI 110 310		Very stiff indistinctly structured reddish brown gravelly to very gravelly CLAY locally tending to extremely weak mudstone. Gravel is subangular and subrounded fine to coarse mudstone lithorelitcs. Very weak to weak thinly laminated to very thinly bedded reddish brown locally mottled greenish grey MUDSTONE. Fractures are subhorizontal closely and medium spaced planar smooth.	18.60	-13.55	
	32C	20.20 - 20.28 20.20 - 21.70	9.70	C**	95 80 61	30 170		20.40m: Subhorizontal fracture infilled (up to **mm) with *desc.* clay. 20.60 - 20.80m: Disintegrated to very stiff reddish brown clay-bound mudstone lithorelicts.	20.80	-15.75	
	33C 34Cs	21.70 - 21.78 21.70 - 23.20 22.25 - 22.55	9.70	C**	87 81 80	320		Weak dark reddish brown finess. Weak dark reddish brown fines SANDSTONE. Fractures are subhorizontal to 20° closely and medium spaced planar rough. Rare very thin greenish grey beds. 21.00 - 21.25m: Subvertical becoming 80° fracture infilled (up to 5mm) with gypsum.			
25/06/19 1710hrs 0.90m 26/06/19 0915hrs 0.90m	35C	23.20 - 23.36 23.20 - 24.70	9.70	C**	78 77 43			23.70 - 23.95m: 70° planar rough fracture infilled (up to	-		
	36C	24.70 - 24.76 24.70 - 26.20	9.70	C**	98 63 21	NI 70 160		Extremely weak to very weak thinly laminated reddish brown MUDSTONE locally disintegrated to very stiff clay-bound mudstone lithorelicts. Fractures are subhorizontal very closely and closely spaced planar rough.	24.70	-19.65	
26/06/19 1300hrs 1.10m		26.20 - 26.27	9.70	C**				Borehole completed at 26.20m.	26.20	-21.15	
water strike	(m) cas	ing (m) rose t	o (m) ti	me to ris	se (m)	rema	arks	AGS CONT		CHE	CKED
							353	38	СТ		

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:18 LP+JP

20 June 2019

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BHU

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 1 of 3

Start Date 17 June 2019

End Date

Easting 325235.3

180754.5

Ground level

Northing

Depth 25.00 m

Scale

5.20mOD

progress sample depth (m) casing test instru depth reduced legend samp date/time type & /core description level no & depth Ιf -ment (m) water depth type from to (m) value range (m) 17/06/19 Grass over firm brown silty CLAY. Frequent rootlets. 0.20 5.00 0.20 - 0.40 1B 1320hrs 2D 0.20 - 0.40 Firm brown mottled grey CLAY with frequent pockets (up 3B 0.60 - 0.80 to 10mm) of orange fine sand. Rare rootlets. 4D 0.60 - 0.80 5B 1.00 - 1.20 0.90 4.30 17/06/19 6D 1.00 - 1.20 1350hrs Soft greyish brown mottled light grey CLAY with rare wood 1.00m Ρ 1.20 - 2.00 Nil 1.20 4.00 fragments (up to 20mm) 18/06/19 7L 1.20 - 2.10Plastic dark brown clayey amorphous PEAT with frequent 1.45 3.75 0900hrs 0.80m 8D 1.30 - 1.40 wood fragments (up to 30mm) 1.70 H 10 Very soft light bluish grey CLAY with frequent pockets (up 1.85 H 14 to 20mm) of organic material and wood fragments (up to 2 00 H 16 40mm) 9P 2.10 - 2.90 2 10 P/S 10P 2.90 - 3.702.10 P/S 11P 3.70 - 4.503.70 P/S Р 4.50 - 5.30 4.50 5.30 -0.105.30 - 6.00 5.30 12L Soft greyish brown slightly sandy CLAY. H 10 5.70 - 5.80m: Plastic dark brown clayey amorphous peat. Ρ 6.00 - 6.60 6.00 131 6.00 - 7.00 6.20 -1.00 Firm reddish brown and brown slightly gravelly sandy CLAY with rare pockets (up to 20mm) of grey and brown 14D 6.50 - 6.60 fine sand. Gravel is angular and subangular fine to coarse sandstone, mudstone and siltstone. 7.00 - 7.45 7.00 S 22 6.80m: Subangular sandstone cobble. 15L 7.00 - 8.507.20 -2.00 7.20m: Subangular sandstone cobble. 7.50 -2.30Firm reddish brown CLAY with rare pockets (up to 5mm) 16D 7.50 - 7.60of greenish grey silt. Continued Next Page {8.00}

EQUIPMENT: Geotechnical Pioneer rig.

METHOD: Hand dug inspection pit 0.00-1.20m. Dynamic sampled (128mm) 1.20-9.10m. Waterflush rotary core drilled (116mm) 9.10-25.00m.

CASING: 168mm diam to 8.70m.

BACKFILL: On completion, borehole backfilled with bentonite pellets 25.00-9.50m. A slotted standpipe (50mm) was installed to 9.50m, granular response zone 9.50-8.50m, bentonite seal 8.50-6.00m. A second slotted standpipe (19mm) was installed to 6.00m, granular response zone 6.00-0.50m, bentonite seal 0.50-0.30m, gravel drain 0.30-0.20m, concrete and raised cover 0.20-0.00m.

REMARKS: Driller notes flush returns reduced between 13.00m to 25.00m (approx. 75-30% returned).

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

water strike (m) casing (m) rose to (m) time to rise (min) remarks 1.20 Nil 1.00 20

35338

CHECKED CT

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER. GPJ TRIALJH. GPJ GEOTECHZ. GLB 04/09/2019 12:07:20 AM

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BH08

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 2 of 3

Start Date 17 June 2019

Easting 325235.3

Scale

35338

CT

20 June 2019 **End Date** Northing 180754.5 Ground level 5.20mOD Depth 25.00 m reduced legend progress sample depth (m) casing test instru depth samp type & date/time /core description (m) level no & depth Ιf -ment water depth type from to (m) value range (m) 8.15 H 28 Soft locally firm reddish brown silty CLAY with rare 8.25 H 34 pockets (up to 5mm) of green silt. 8 35 -3.15 17D 8.40 - 8.50 NA 7.80 - 7.90m: Abundant pockets (up to 60mm) of green 18D 7.00 S 45 8.50 - 8.95 19L 8.50 silt 8.50 - 9.10 18/06/19 Dense reddish brown clayey fine SAND locally sandy 1610hrs 3.00m clayey silt. 100 13 0 19/06/19 20C 9.10 - 10.00 8.70 9.10 - 9.30m: Tending to extremely weak fine sandstone. 0920hrs 1.90m 21D 9.40 - 9.50 9.70 -4.50 NI NI 70 Extremely weak light green SILTSTONE locally 10.00 --4.80 22D 10.00 - 10.27 8.70 S*261 disintegrated to silt. Fractures are subhorizontal extremely 40 160 160 90 13 11 10.00 - 11.50 23C closely and closely spaced planar rough. 9.90 - 10.00m: Subvertical planar smooth fracture. 10.50 -5.30 Very weak reddish brown fine SANDSTONE. Fractures NA are subhorizontal very closely and closely spaced planar smooth 10.15m: Pocket (60mm) of green silt. 10.30 - 10.45m: Subvertical planar smooth fracture 24Cs 11.05 - 11.45 stained dark red 8.70 C*113 11.50 - 11.85 Very stiff reddish brown mottled purplish grey gravelly 25C 11.50 - 13.00 CLAY tending to extremely weak mudstone with frequent pockets (up to 20mm) of light grey silt. Gravel is subangular and subrounded fine to coarse lithorelicts of extremely weak mudstone. 12.05m: Pocket (40mm) of bluish green silt. 26D 12.50 - 12.60 12.80 - 12.95m: 45° planar smooth fissure. 13.00 - 13.21 8.70 C*261 100 0 0 27C 13.00 - 14.50 14.00 -8.80 28D 14.00 - 14.10 Very stiff reddish brown and purplish grey very gravelly CLAY tending to extremely weak mudstone with frequent pockets (up to 80mm) of light green silt. Gravel is 14.50 - 14.73 8.70 C*261 100 0 0 14.50 - 16.00 subangular fine to coarse lithorelicts of very weak and 29C weak mudstone. 30Cs 14.85 - 15.25 15.30 - 15.50m: Abundant pockets (up to 50mm) of bluish green silt. 16.00 - 16.20 8.70 C*353 100 0 0 31C 16.00 - 17.50 32D 16.80 - 16.90 17.50 - 17.67 8.70 C*316 100 19 19 17 65 --124533C 17.50 - 19.00 100 100 180 Very weak reddish brown and purplish brown MUDSTONE. Fractures are subhorizontal closely spaced -12.80 18.00 -Continued Next Page {18.00} CONTRACT water strike (m) casing (m) time to rise (m) AGS CHECKED rose to (m)

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:20 AM

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

RHAR

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 3 of 3

Start Date 17 June 2019

Easting 325235.3

Scale

End Date 20 June 2019 Northing 180754.5 Ground level 5.20mOD Depth 25.00 m reduced legend progress sample depth (m) casing test instru depth samp date/time /core description (m) level no & depth type & Ιf -ment water depth type from to (m) value range (m) planar rough. 34D 18.20 - 18.30 Very stiff purplish brown and reddish brown very gravelly CLAY tending to extremely weak mudstone with frequent pockets (up to 80mm) of greenish grey silt. Gravel is subangular fine and medium lithorelicts of extremely weak 19.00 - 19.14 8.70 C*353 mudstone. 97 41 29 35C 19.00 - 20.50 19.30 --14.10 NI 170 280 Very weak and weak reddish brown MUDSTONE with frequent pockets (up to 60mm) of green silt. Fractures are subhorizontal and 40-50° closely and medium spaced undulating smooth. 19.45 - 19.95m: Recovered non intact as clayey 19/06/19 subangular fine to coarse mudstone gravel. 1640hrs 1.20m 20.50 - 20.70 8.70 C*207 100 25 19 20/06/19 36C 20.50 - 22.00 20.50 - 21.10m: Disintegrated to very stiff reddish brown 0940hrs gravelly clay. 1 20m 21.35 - 21.70m: Locally recovered non intact as subangular fine to coarse mudstone gravel. 8.70 C*500 22 00 - 22 09 22.10 -16.90 37C 22.00 - 23.50 NI 110 160 Very weak and weak dark reddish brown micaceous fine SANDSTONE. Fractures are 20-30° very closely and closely spaced planar smooth. 22.80 - 23.05m: Extremely weak. Recovered non intact as subangular fine and medium sandstone gravel. 23.05 - 23.45m: Very stiff reddish brown gravelly clay. Gravel is subangular fine and medium lithorelicts of 23.50 - 23.59 8.70 C*429 extremely weak mudstone. 86 45 31 38C 23.50 - 25.00 23.70 - 24.50m: Purplish brown. 24.10m: 20° fracture infilled (20mm) with soft brown micaceous clay 24.30 - 24.50m: Extremely closely spaced 50° undulating 20/06/19 smooth fractures. 1330hrs 1.20m 24.55m: Band (30mm) of extremely weak green 25.00 - 25.11 8.70 C*353 25.00 --19.80 micaceous siltstone. 24.80 - 25.00m: Weak reddish brown mudstone Borehole completed at 25.00m. {28.00} CONTRACT CHECKED water strike (m) casing (m) rose to (m) time to rise (m) AGS 35338 CT

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:21 AM

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BH09

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 1 of 3

Start Date 18 June 2019

Easting 325021.8

Scale 1:50

End Date 20 June 2019 Northing 180676.4 Ground level 5.10mOD Depth 23.20 m

progress	sample	depth (m)	casing	test	samp.		instru		depth	reduced	legend
date/time	no &		depth	type &	/core	If	-men	description	(m)	level	
water depth	type	from to	(m)	value	range					(m)	
18/06/19			E				3 3	Grass over soft dark brown clayey SILT. Frequent rootlets	0.10	5.00	<u> </u>
1230hrs Dry	1B 2D	0.20 - 0.40 0.20 - 0.40	Ł					Firm light grey mottled brown CLAY with frequent pockets	T] :		
•	3B	0.60 - 0.80	E					(up to 10mm) of orange fine sand. Frequent roots (up to			
	4D	0.60 - 0.80	F				\$ \$H	20mm diam) and rootlets.	-		
	5B	1.00 - 1.20	F						0.90	4.20	==
	6D P	1.00 - 1.20 1.20 - 2.20	Nil				H	Very soft light grey and bluish grey CLAY with frequent			
		1.20 - 2.20						pockets (up to 80mm) of firm dark brown clayey peat and rare bands (up to 400mm) of pseudofibrous peat.			<u> </u>
	-	00	ļ.				H	Frequent rootlets and decomposing plant material.			
			L							1	
	8D	1.70 - 1.90	Ł	H 14			J			_	
		1.90	-	H 15					_	-	<u> </u>
	0.0	2.10	F 0.00	H 12	\vdash		∄⊨				
	9P	2.20 - 3.20	2.20				Ħ⊨			1	
			F				Ħ⊨				
			Ė		P/S		Ħ 🗏				
							ĦĦ				
			ļ.				Ħ⊨	3.00 - $4.35\mbox{m}\xspace$ Slightly gravelly. Gravel is fine and medium			
	10P	3.20 - 4.20	3.20				ĦĦ	sandstone.		-	<u> </u>
		3.20	Ł	H 10			∄⊨				
			E		P/S		∄⊨				
			F				∄⊨				
			F				ĬΕ			1	<u> </u>
	11L	4.20 - 5.20	4.20				ĦΕ		4.35	0.75	
			Ė				∄⊨	Frim becoming very stiff indistinctly fissured dark reddish			
			-				Ħ⋿	brown locally mottled bluish grey slightly sandy gravelly			- -
18/06/19			Ė				∄⊨	CLAY with rare pockets (up to 10mm) of brown fine sand. Gravel is subangular and subrounded fine and medium			
1720hrs 1.50m	400	500 505		0.47			ΗE	extremely weak mudstone, siltstone and sandstone. Rare	-	1	0
19/06/19	12D 13C	5.20 - 5.65 5.20 - 6.10	5.20	S 17	98		∄⊨	decomposing plant material.			
0820hrs	130	3.20 - 0.10	E				∄⊨	4.35 - 4.45m: Gravel is fine to coarse sandstone and			F
0.50m			+				∄⊨	quartzite.	-	-	2-0-0
			F				∄⊨	5.70 - 6.15m: Rare reduction spots (up to 5mm) and	-	-	
			F				Ħ⊨	bands of greenish blue clay (up to 12mm)	6 15	-1.05	
	14C	6.10 - 6.70	F		62			Voncetiff figured dark roddich brown alightly accede	6.15	-1.05	Ė .
			F				H E	Very stiff fissured dark reddish brown slightly sandy gravelly CLAY with frequent greenish grey reduction spots		1	<u> </u>
		6.70 - 6.96	F 20	C* 200			ВĒ	(up to 20mm). Gravel is subangular and subrounded fine		1	<u> </u>
	15C	6.70 - 6.96 6.70 - 8.20	5.20	200	90		ИĒ	to coarse lithorelicts of very stiff clay to extremely weak		1	<u> </u>
		· U.=U	L		16 16		ΙĒ	mudstone. Rare fragments of decomposing plant material		1	
			t				ΗĒ			1	ļ
			F				НĒ		-	}	H
			Ē				H E		-	-	
			F				ΗĒ		7.80	-2.70	
İ			F			60	H E		7	1	
							l ' ' ⁻	Continued Next Page	{8.00}	1	

EQUIPMENT: Geotechnical Pioneer rig.

METHOD: Hand dug inspection pit 0.00-1.20m. Dynamic sampled (128mm) 1.20-5.20m. Waterflush rotary core drilled (116mm) 5.20-23.20m. CASING: 168mm diam to 5.20m.

BACKFILL: On completion, borehole backfilled with bentonite 23.20-11.00m. A slotted standpipe (50mm) was installed to 11.00m, granular response zone 11.00-9.70m, bentonite seal 9.70-2.00m. A second slotted standpipe (19mm) was installed to 2.00m, granular response zone 2.00-0.40m, bentonite seal 0.40-0.20m, gravel drain 0.20-0.10m, concrete and raised cover 0.10-0.00m.

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

water strike (m) casing (m) rose to (m) time to rise (min) remarks

1.10 Nil Seepage observed in inspection pit.

35338

CHECKED

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER. GPJ TRIALJH. GPJ GEOTECH2. GLB 04/09/2019 12:07:23 MC

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BH09

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 2 of 3

Start Date 18 June 2019 Easting 325021.8

Scale 1:50

End Date 20 June 2019 Northing 180676.4 Ground level 5.10mOD Depth 23.20 m

End Date	20	June 2019			Nortl	hing	18	0676.4 Ground level 5.10mOD	D	epth	23	3.20 m
progress date/time	sample no &	depth (m)	casing depth	test type &	samp. /core	If	instru -ment	description	(lepth (m)	reduced level	legend
water depth	type	from to	(m)	value	range	'1		3333.,p.13		(,	(m)	
	16C	8.20 - 8.52 8.20 - 9.70	5.20	C* 176	100 44 30	80 240		Extremely weak to weak dark reddish brown MUDS Fractures are subhorizontal and 50-60° becoming randomly orientated mainly closely spaced planar s frequently infilled (up to 3mm) with clay.		-		
								8.70 - 9.90m: Fracture surfaces locally weakened (50mm) and recovered as fine to coarse mudstone		- - - -		
	17C	9.70 - 9.91 9.70 - 11.20	5.20	C* 500	100	NI		Vom atiff indictionally atmosphered financial deals and discovered		9.90 -	-4.80	
			- - - - - -					Very stiff indistinctly structured fissured dark reddis brown gravelly to very gravelly CLAY with locally fre greenish blue reduction spots. Gravel is subangula subrounded fine to coarse lithorelicts of extremely in mudstone. Fissures are subhorizontal to 15° locally (up to 2mm) with clay.	equent r and weak			
	18C	11.20 - 11.39 11.20 - 12.70	5.20	C* 667	100 60 33	NI 90 260		Very weak and weak dark reddish brown MUDSTO with frequent greenish grey reduction spots (up to 3 and dark purplish red burrows (up to 5mm diam) lo	NE 30mm)	11.10 _ - - - -	-6.00	
			- - - - -					tending to claybound angular fine and medium gravisized mudstone lithorelicts. Fractures are subhorized 15° and 70° to subvertical mainly closely spaced pland undulating rough and smooth frequently infilled 5mm) with clay.	vel ontal to anar	- - - - - - -		
	19C	12.70 - 12.82 12.70 - 14.20	5.20	C* 667	100 49 51					- - - - -		
			- - - - - -					13.35 - 13.55m: Bluish green.		- - - - -		
	20C	14.20 - 14.42 14.20 - 15.70	5.20	C* 286	97 32 7							
			- - - - -			30		Weak dark reddish brown fine and medium micace		- - - 15.30 - -	-10.20	• • • •
	21C 22Cs	15.70 - 15.82 15.70 - 17.20 15.85 - 16.15	F	C* 750	97 80 71	30 150 300		SANDSTONE with rare bluish green reduction spot Fractures are subhorizontal to 15° closely and med spaced planar smooth rarely infilled (up to 15mm) viclay.	ts. ium	- - - - -		
19/06/19			_ - - - -							- - - -		
1700hrs 2.00m 20/06/19 0850hrs 1.00m	23C	17.20 - 17.29 17.20 - 18.70	5.20	C**	100 59 29					- - - - -		
			- - -			NI		Continued Next Page	{	17.80 - - 18.00}	-12.70	
water strike	(m) casi	ing (m) rose to	o (m) ti	me to ris	se (m)	rem	arks	AGS C	ONTRA	СТ	CHE	CKED
									35338	3	С	Т

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:23 MC

 \Box

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 3 of 3

Start Date 18 June 2019

325021.8 Easting

Scale

End Date	20	June 2	2019			Nort	hing	18	0676.4	Ground le	evel 5.10m	OD	Depth	23	3.20 n
progress date/time water depth	sample no & type	depth	n (m)	casing depth (m)		samp. /core range	If	instru -ment		d	escription		depth (m)	reduced level (m)	legend
	24C		- 18.78 - 20.20	5.20	C**	100 73 36	50 140 NI 70 150		MUDSTO to 10mm) subhorizo and close frequently	NE with rare sp of greenish gre ntal to 15° and ly spaced plana infilled (up to 3	ely weak dark reddis ots (up to 30mm) ar ey reduction. Fractur 70° to subvertical ve ar and undulating sm 0mm) with clay.	nd bands (up es are ery closely nooth	18.60	-13.50	
	25C	l	- 20.34 - 21.70		C* 857	97 70 37			thickly into Rare loca of greenis very close rough and and rarely with a mid 19.70 - 19 laminae o	erlaminated with frequent spo h grey reductio ely and closely s I smooth freque infilled (up to 1 aceous veneer .95m: Fine and f mudstone and	I medium sandstone I siltstone.	d silfstone. I 2mm bands horizontal ndulating nm) with clay clay, rarely with thin	-		
				- - - - -			NI		laminae o 20.95 - 21 laminae o	f mudstone and .05m: Fine and f mudstone and	I medium sandstone I siltstone. I medium sandstone I siltstone. Subvertic I weak dark reddish	with thin all fracture.	21.40	-16.30	
	26C		- 21.80 - 23.20		C* 600	98 37 21			MUDSTO Gravel is lithorelicts 50mm). F spaced.	NE locally tend subangular fine Frequent greeractures are rare20m: Disintego	ing to very stiff grave to coarse gravel sizenish grey reduction adomly orientated verated to fine and me	elly clay. ed mudstone spots (up to ery closely	- - - - - -		
20/06/19 1610hrs 2.50m		23.20 -	- 23.26	5.20	C**		80		Very weal subhorizo frequently	k dark reddish b			22.95 -	-17.85 -18.10	
				- - - - - - - -					Borehole	completed at 23	3.20m.		-		
				- - - - - -									- - - - - -		
				- - - - - -									- - - - - -		
				- - - - - -									-		
				- - - - -											
water strike	(m) casi	ing (m)	rose t	o (m) ti	me to ris	se (m)	rem	arks			AGS	CONTR		CHE	
												353	30	C	T

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:23 MC

 \Box

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

1:50

26.70 m

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 1 of 3

Start Date 26 June 2019

1 July 2019

End Date

Easting 325231.6

180682.1

Ground level

Northing

Scale

Depth

5.35mOD

progress sample depth (m) test instru depth reduced legend casing samp date/time /core description level no & depth type & Ιf -ment (m) water depth type from to (m) value range (m) 26/06/19 0.10 5.25 Grass over firm brown clayey SILT. Frequent rootlets. 0.20 - 0.40 1B 1300hrs 2D 0.20 - 0.40 0.40 4.95 Firm brown and brownish grey slightly sandy CLAY. Frequent rootlets. 3B 0.60 - 0.80 4D 0.60 - 0.80Soft brownish grey mottled grey CLAY with rare pockets (up to 10mm) of orangish brown fine sand. 5B 1.00 - 1.20 0.90 - 1.20m: Locally bluish grey. 1.00 - 1.20 6D 7UT 1.20 - 1.65 Nil 1.40 3.95 9L 1.20 - 2.20 Firm dark brown clayey PEAT. 1.75 3.60 8D 1.70 - 2.15 Nil S 4 Soft light bluish grey CLAY with abundant wood fragments 10D 1.90 - 2.00 (up to 50mm) and relict rootlets. 2.20 - 2.65 Nil S 7 11D 12L 2.20 - 3.20H 14 2 75 3.05 2.30 13D 2.90 - 3.002.95 - 3.05m: Plastic dark brown clayey peat H 10 3.10 14UT 3.20 - 3.653.20 Very soft light bluish grey silty CLAY. 16L 3.20 - 4.20 3.05 - 4.00m: Rare wood fragments (up to 40mm) and relict rootlets S 2 15D 3.70 - 4.153 20 26/06/19 1700hrs 17D 3.90 - 4.00 H 17 1.00m 27/06/19 0945hrs 18L 4.20 - 5.20 4.20 0.00m 19D 4.90 - 5.00 0.25 5 10 Firm dark brown oxidising to black clayey fibrous PEAT. 20UT 5.20 - 5.655.20 Strong organic odour. 11/ 23L 5.20 - 6.70 11, 11 21D 5.65 - 5.75 S 3 11/ 22D 5.75 - 6.20 5.20 24D 5.90 - 6.00 11, 11 6.15 - 6.25m: Very soft grey clay with frequent pockets (up 11/ to 10mm) of organic material. 6.60 -1.25 6.50 - 6.60m: Slightly sandy. 25D 6.70 - 7.15 6.70 S 21 6.70 - 8.20 26L Stiff brown and grevish brown sandy slightly gravelly CLAY with frequent pockets (up to 10mm) of light grey fine sand. Gravel is angular to subrounded fine and medium sandstone, siltstone and mudstone. 27D 7.50 - 7.607 70 H 52 7.80 - 7.90m: Firm. 7.90 H 94 Continued Next Page {8.00}

EQUIPMENT: Geotechnical Pioneer rig.

METHOD: Hand dug inspection pit 0.00-1.20m. Dynamic sampled (128mm) 1.20-9.20m. Waterflush rotary core drilled (116mm) 9.20-26.70m. CASING: 168mm diam to 8.20m.

BACKFILL: On completion, borehole backfilled with bentonite pellets 26.70-2.50m. A slotted standpipe (50mm) was installed to 2.50m, granular response zone 2.50-0.50m, bentonite seal 0.50-0.30m, concrete and raised cover 0.30- 0.10m.

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

water strike (m) casing (m) rose to (m) time to rise (min) remarks AGS

CONTRACT

CHECKED

Groundwater not encountered prior to use of water flush.

35338

CT

EC

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 2 of 3

Start Date 26 June 2019 Easting 325231.6 Scale 1:50

End Date 1 July 2019 Northing 180682.1 Ground level 5.35mOD Depth 26.70 m reduced legend progress sample depth (m) casing test instru depth samp type & date/time /core description (m) level no & depth Ιf -ment water depth type from to (m) value range (m) 7 90 - 8 05m: Reddish brown 28D 8.20 - 8.65 8.20 S 22 29L 8.20 - 9.20 8.65 -3.30H 103 8.80 NA Stiff reddish brown mottled purplish grey slightly sandy gravelly CLAY. Gravel is subangular and subrounded fine 30D 8.90 - 9.00 and medium lithorelicts of extremely weak mudstone. 31C 9.20 - 9.70 8.20 9.70 -4.35 9.70 - 10.14 8.20 C*105 32C 9.70 - 11.20 0 NR No Recovery. 27/06/19 1700hrs 1.60m 8.20 C*194 11.20 --5.85 11.20 - 11.44 28/06/19 33C 11.20 - 12.50 Very stiff reddish brown slightly sandy gravelly CLAY 0940hrs 1.30m tending to extremely weak mudstone. Gravel is subangular fine and medium lithorelicts of extremely weak mudstone. 12 00 --6 65 11.90 - 12.00m: Pinkish brown clayey fine sand. EC Extremely weak reddish brown mottled greenish grey and purplish grey MUDSTONE recovered non intact as clayey 8.20 C*300 12.50 - 12.73 97 4 0 subangular fine to coarse gravel. 34C 12.50 - 14.00 12.90 -7.55 Extremely weak to very weak reddish brown MUDSTONE. Fractures are subhorizontal and subvertical intersecting extremely closely and very closely spaced planar smooth and rough. Locally recovered non intact as clayey subangular fine to coarse gravel with frequent pockets (up to 30mm) of light green silt. 13.45 - 13.50m: Dusting of white gypsum crystals (up to 14.00 - 14.15 8.20 C*462 14.00 - 15.50 97 18 2mm) on fracture surfaces. 35C 14.50 - 14.60m: Pocket (100mm) of light green micaceous silt 14.65 - 14.75m: Weak dark reddish brown fine sandstone. 8.20 C*162 15 50 - 15 76 15.35 - 15.50m: Very weak reddish brown fine sandstone. 100 0 0 36C 15.50 - 16.70 16.20 --10.85 Very stiff reddish brown becoming purplish brown slightly sandy gravelly CLAY. Gravel is subangular fine and medium lithorelicts of extremely weak mudstone. 16.70 -11.3516.55 - 16.70m: Micaceous 37C 16.70 - 17.00 120 120 17.00 - 17.10 8.20 C*667 Weak reddish brown fine SANDSTONE. Fractures are 38C 17.00 - 18.50 subhorizontal closely spaced planar rough. 17.30 --11.95 16.90 - 17.00m: 50° planar smooth fracture N Very weak dark reddish brown and purplish brown MUDSTONE recovered non intact as clayey subangular fine to coarse gravel. Continued Next Page {18.00} AGS CONTRACT water strike (m) casing (m) time to rise (m) remarks CHECKED rose to (m) Groundwater not encountered prior to use of water 35338 CT flush.

35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:26 AM MC Geotechnical Engineering Ltd, Tel. 01452 527743

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BH10

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 3 of 3

Start Date 26 June 2019

Easting 325231.6

Scale 1:50

progress date/time	sample no &	depth	n (m)	casing depth	test type &	samp. /core	I _f	instru -ment	description	depth (m)	reduced level	legen
water depth	type	from	to	(m)	value	range	-			, ,	(m)	
	39C		- 18.70 - 20.00	8.20	C*240	97 2 0			17.85 - 18.00m: Extremely weak greenish grey mottled reddish brown fine sandstone. 18.20 - 18.35m: Greenish grey siltstone recovered non intact as subangular fine and medium siltstone gravel.	-		
00/00/40							NI		Extremely weak reddish brown fine SANDSTONE.	19.45		• • •
28/06/19 1610hrs 2.80m		20 00 -	- 20.21	8 20	C*250	-	NI		Fractures are subhorizontal and subvertical intersecting extremely closely spaced planar smooth.	20.00	1	
29/06/19 0800hrs 1.40m	40C	20.00 -		- 0.20 -	0 200	93 17 13	NA		Extremely weak reddish brown MUDSTONE. Fractures are subhorizontal and 50-60° very closely spaced planar smooth and rough.	=		
	41C		- 21.60 - 23.00	8.20	C*600	80	NI 55 195		Very stiff fissured reddish brown slightly sandy gravelly to very gravelly CLAY. Gravel is subangular and subrounded fine and medium lithorelicts of extremely weak mudstone. Fissures are subhorizontal and subvertical extremely closely and very closely spaced intersecting. 21.00 - 21.20m: Rare pockets (up to 40mm) of bluish green silt.	21.20	-15.85	
	410	21.00	20.00	- - - - -		80 15 12	NI NI 180		Very weak to weak dark reddish brown MUDSTONE with frequent pockets (up to 70mm) of bluish green silt/siltstone. Fractures are 15-20° very closely and closely spaced planar smooth.	21.90	-16.55	
	42C		- 23.10 - 24.50	8.20	C*667	97 52 42	NU		Extremely weak dark reddish brown MUDSTONE. Fractures are subhorizontal and subvertical intersecting extremely closely to closely spaced planar smooth and rough. Locally recovered non-intact as clayey subangular fine to coarse gravel with rare pockets (up to 25mm) of bluish green silt.	23.35	-18.00	
				- - - - - - - -			NI 100 190		Very weak dark reddish brown MUDSTONE locally mottled bluish green and rare reduction spots (up to 25mm). Fractures are subhorizontal, 40-50° and 70-80° very closely and closely spaced planar rough and smooth. Locally disintegrated to claybound fine and medium gravel sized lithorelicts.	24.25	-18.90	
	43C		- 24.59 - 26.00	8.20	C*545	77 31 19	140 210		Weak dark reddish brown MUDSTONE with frequent reduction spots (up to 45mm). Fractures are subhorizontal to 20° very closely and closely spaced planar smooth rarely infilled (up to 40mm) with clay and (up to 2mm) with fine to coarse sand.	-		
29/06/19	44C		- 26.07 - 26.70	8.20	C*750	74 23 0	NI NI 80		Extremely weak dark reddish brown MUDSTONE with rare reduction spots (up to 25mm). Fractures are subhorizontal and subvertical intersecting extremely closely to closely spaced planar and undulating smooth and rough with frequent veneers of mica rarely infilled (up to 20mm) with clay.	25.50	-20.15	
1400hrs 2.40m				- - - -					Borehole completed at 26.70m.	26.70	-21.35	
				- - - - - -						-		
				-						{28.00}	1	

flush.

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:26 AM MC

EC

28 June 2019

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

1:50

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 1 of 2

Start Date 27 June 2019

End Date

Easting 325639.4

Northing

Depth 15.40 m

Scale

4.75mOD

180852.8 Ground level

progress date/time	sample no &	depth (m)	casing depth	test type &	samp. /core	I _f	instru -ment	description	depth (m)	level	legend
water depth 27/06/19	type	from to	(m)	value	range			Grass over stiff dark brown clayey SILT. Abundant	0.10 -	(m) 4.65	x =
0900hrs	1B 2D	0.30 - 0.50 0.30 - 0.50	-					rootlets. MADE GROUND.	-	1.00	
	3B	0.80 - 1.00	-					Stiff grey mottled orangish brown CLAY. Rare rootlets.	-		
	4D 5B	0.80 - 1.00 1.00 - 1.20							1.00	3.75	
	6D 7D	1.00 - 1.20 1.20 - 1.65	Nil	S 1				Firm grey mottled orangish brown CLAY.	1.20	3.55	
	8L	1.20 - 2.20	-					Firm dark brown clayey fibrous PEAT. Frequent fragments of plant material (up to 30mm).	1.50	3.25	<u> </u>
			-					Very soft bluish grey CLAY. Rare fragments of plant material (up to 20mm).	-		
									_		
	9UT 11L	2.20 - 2.65 2.20 - 3.20	- Nil						-		
	400	0.70 0.45	-	0 -14					-		
	10D	2.70 - 3.15	- NII	S <1					_		
	12D 13L	3.20 - 3.65 3.20 - 4.20	3.20	S <1					=		
	102	0.20 4.20	-						-		
									=		
			-						=		
	14UT	4.20 - 4.65	4.20						_		
	17L 15D	4.20 - 5.20 4.40 - 4.50	-						4.00	0.05	
	16D	4.70 - 5.15	4.20	S <1				Firm dark brown clayey fibrous PEAT. Frequent fragments	4.80	-0.05	<u> </u>
	18D 19D	5.10 - 5.20 5.20 - 5.65	5.20	S <1				of plant material (up to 30mm).	_		1, 11, 1
	20L	5.20 - 6.70							_		<u> </u>
			-						5.80	-1.05	11 11 11
			_					Very soft bluish grey silty CLAY with rare fragments of plant material (up to 10mm).	_		
								plant material (up to formin).	=		x
	045	0.70 7.45							=		x
	21D 22L	6.70 - 7.15 6.70 - 8.20	6.70	52	H				=		 X
									-		 x=
	23D	7.30 - 7.40	-								x
								Firm dark brown clavou fibratio DEAT Fraguent fragments	7.60	-2.85	<u>x_</u>
			_					Firm dark brown clayey fibrous PEAT. Frequent fragments of plant material (up to 30mm).	=		<u>', \' \' \</u>
								Continued Next Page	{8.00}		

EQUIPMENT: Geotechnical Pioneer rig.

METHOD: Hand dug inspection pit 0.00-1.20m. Dynamic sampled (128mm) 1.20-12.40m. Waterflush rotary core drilled (116mm) 12.40-15.40m.

CASING: 168mm diam to 11.20m.

BACKFILL: On completion, hole backfilled with bentonite pellets 15.40-0.50m and arisings 0.50-0.00m.

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

AGS water strike (m) casing (m) rose to (m) time to rise (min) CONTRACT **CHECKED** 2.00 1.20 Encountered following run 1.20-2.20m 35338 CT

35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:28 JP/AM Geotechnical Engineering Ltd, Tel. 01452 527743

В

BOREHOLE LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BH11

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 2 of 2

35338

CT

Start Date 27 June 2019 Easting 325639.4 Scale 1 : 50

orogress	sample	depth (m)	casing	test	samp.		instru			reduced	leger
late/time ater depth	no & type	from to	depth (m)	type & value	/core range	If	-ment	description	(m)	level (m)	
	24D 25L	8.20 - 8.65 8.20 - 9.70	8.20	S 19					8.20	-3.45	77
			_					Soft bluish grey CLAY. Medium dense dark reddish brown slightly sandy slightly	8.40	-3.65	× % × c
	26D	8.60 - 8.70	_					gravelly SILT. Gravel is subangular and subrounded fine and medium mudstone, sandstone and quartz.	8.80	-4.05) X
	27D	9.70 - 10.15	9.70	S 16				Stiff reddish brown slightly sandy gravelly CLAY. Gravel is subangular and subrounded fine to coarse sandstone, mudstone and quartz. Rare greenish grey reduction spots (up to 10mm).	9.70	-4.95	
	28L	9.70 - 11.20						Stiff reddish brown sandy CLAY locally tending to clayey fine sand.	=		
7/06/19 20hrs	29D	10.90 - 11.00	-					10.50 - 10.60m: Greenish grey silt.	-		
20m //06/19 /45hrs 55m	30D 31L	11.20 - 11.65 11.20 - 12.40	11.20	S 23				11.30m: Green subrounded siltstone cobble.	-		
	32D 33D	11.70 - 11.80 12.40 - 12.72	11 20	S*171	-	NI		11.85 - 12.00m: Greenish grey subangular fine to coarse siltstone gravel.	12.30	-7.55	
	34C	12.40 - 13.90	- 11.20 	0 171	100 32 32 32	110 200		Extremely weak and very weak reddish brown MUDSTONE. Fractures are subhorizontal and subvertical closely spaced undulating smooth.	-		
									13.45 -	-8.70	
	35Cs	13.50 - 13.85 13.90 - 14.33	11 20	C*67		NA		Very stiff reddish brown CLAY tending to extremely weak mudstone with rare green reduction spots (up to 10mm).	=		
	36C	13.90 - 15.40		0 01	100 31 17				-		
			- - - -			NI 70 140		Very weak dark reddish brown fine SANDSTONE. Fractures are subhorizontal to 10° closely spaced planar	14.60	-9.85	
/06/19 00hrs 50m		15.40 - 15.68	11 20	C*240				rough. 15.20 - 15.40m: Very stiff sandy clay tending to extremely	15 40	-10.65	
		10.40 10.00	- 11.20	0 240				weak mudstone. Borehole completed at 15.40m.	=		
									_		
									-		
			<u>-</u>						-		
			<u> </u>						-		
			- - -						-		
									{18.00}		

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:07:28 JP/AM EC

STANDARD PENETRATION TEST

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole	borehole	s.w.p	bottom	casing	water	seating	g drive	test	drive	test		energy
no.	depth (m)	(m)	depth (m)	depth (m)	level (m)	blows	pen (mm)	blows	pen (mm)	type	N	ratio (%)
BH01	1.20	0.08	1.73	Nil	Dry	1 0	75 75	1 1 1 1	75 75 75 75	S	4	75
BH01	2.65		3.10	Nil	1.60	2 6	75 75	6 6 9 9	75 75 75 75	S	30	75
BH01	3.20		3.65	3.20	1.10	1 0	75 75	2 3 3 3	75 75 75 75	S	11	75
BH01	4.65		4.97	4.20	1.30	7 14	75 75	15 26 9	75 75 20	S	88	75
BH01	5.20		5.53	5.20	1.00	6 14	75 75	15 30 5	75 75 25	S	86	75
BH01	6.70		6.89	5.20	1.20	13 12	75 50	50	65	С	231	75
BH01	8.20		8.41	5.20	1.20	5 20	75 55	50	75	С	200	75
BH02	1.20		1.65	Nil	1.20	1 0	75 75	0 0 0 0	75 75 75 75	S	<1	70
BH02	2.80		3.25	Nil	1.20	1 0	75 75	0 1 0 1	75 75 75 75	S	2	70
BH02	3.30		3.75	3.15	1.00	1 0	75 75	0 1 1 0	75 75 75 75	S	2	70
BH02	4.50		4.95	4.15	1.00	5 4	75 75	3 3 4 5	75 75 75 75	S	15	70
BH02	5.30		5.75	5.15	1.00	2 1	75 75	1 2 2 3	75 75 75 75	S	8	70
BH02	6.80		7.25	6.80	1.00	2 2	75 75	3 3 4 6	75 75 75 75	S	16	70
BH02	8.30		8.70	6.80	1.80	9 10	75 75	8 10 20 12	75 75 75 25	S	60	70
BH02	9.80		10.05	6.80	1.10	7 18	75 55	30 20	75 40	S	130	70
BH02	11.30		11.48	6.80	1.10	21 4	75 15	37 13	75 15	С	167	70
BH02	12.80		12.96	6.80	1.10	12 13	75 20	50	60	С	250	70
BH03	1.75		2.20	Nil	Dry	2 1	75 75	1 2 2 2	75 75 75 75	S	7	75
BH03	2.20		2.65	Nil	Dry	1 2	75 75	2 1 2 2	75 75 75 75	S	7	75
BH03	3.75		4.20	3.20	2.40	2 2	75 75	7 6 5 5	75 75 75 75	S	23	75
BH03	4.20		4.65	4.20	1.20	1 2	75 75	4 4 6 10	75 75 75 75	S	24	75
BH03	5.00		5.37	5.00	1.40	4 9	75 75	13 20 17	75 75 65	S	70	75
BH03	6.50		6.62	5.00	1.20	25	65	100	55	С	545	75
BH03	8.00		8.17	5.20	1.10	9 16	75 25	100	70	С	429	75

notes

- 1. Test carried out in general accordance with BS EN ISO 22476-3:2005 + A1:2011
- 2. s.w.p = self weight penetration.
- 3. N values have not been subjected to any correction.
- 4. Test carried out using split spoon S, solid cone C.
- 5. Where full test drive not completed, linearly extrapolated N value reported.
- . ** Denotes no effective penetration.

CONTRACT	CHECKED
35338	СТ

STANDARD PENETRATION TEST

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole	borehole	s.w.p	bottom	casing	water	seating	drive	test	drive	test		energy
no.	depth (m)	(m)	depth (m)	depth (m)	level (m)	blows	pen (mm)	blows	pen (mm)	type	N	ratio (%)
BH03	9.50		9.66	5.20	2.00	10 15	75 25	100	55	С	545	75
BH03	11.00		11.14	5.20	2.10	25	75	100	65	С	462	75
BH04	6.00		6.45	6.00	1.60	4 5	75 75	6 9 9 12	75 75 75 75	S	36	70
BH04	7.50		7.95	7.50	2.00	6 4	75 75	4 4 4 3	75 75 75 75	S	15	70
BH04	10.00		10.45	9.00	2.20	8 6	75 75	6 6 7 8	75 75 75 75	S	27	70
BH04	11.50		11.72	9.00	2.20	15 10	75 10	30 70	75 60	S	222	70
BH04	13.00		13.07	9.00	2.20	25	10	100	60	С	500	70
BH04	14.30		14.41	9.00	4.00	25	40	100	70	С	429	70
BH04	16.00		16.11	9.00	1.70	25	40	100	65	С	462	70
BH05	1.20		1.65	Nil	Dry	1 0	75 75	0 0 1 2	75 75 75 75	S	3	76
BH05	2.20		2.65	Nil	2.00	1 1	75 75	2 2 2 3	75 75 75 75	S	9	76
BH05	3.75		4.15	3.20	2.00	7 10	75 75	11 11 14 14	75 75 75 25	S	60	76
BH05	4.20		4.29	4.20	1.20	25	75	50	10	С	**	76
BH05	5.20		5.40	4.20	1.10	10 15	75 20	79 21	75 25	С	300	76
BH05	6.70		6.89	4.20	1.10	7 18	75 50	100	65	С	462	76
BH05	8.20		8.33	4.20	1.20	25	75	100	50	С	600	76
BH05	9.70		9.87	4.20	1.20	13 12	75 25	100	65	С	462	76
BH05	11.20		11.32	4.20	1.40	25	65	100	50	С	600	76
BH05	12.70		12.83	4.20	1.50	15 10	75 5	100	50	С	600	76
BH05	14.20		14.29	4.20	1.50	25	50	100	40	С	750	76
BH05	15.70		15.78	4.20	1.60	25	50	100	25	С	**	76
BH05	17.20		17.32	4.20	2.00	10 15	75 5	100	40	С	750	76
BH05	18.70		18.84	4.20	2.40	10 15	75 15	100	45	С	667	76
BH05	20.20		20.31	4.20	2.60	25	40	100	70	С	429	76

notes

- 1. Test carried out in general accordance with BS EN ISO 22476-3:2005 + A1:2011
- 2. s.w.p = self weight penetration.
- 3. N values have not been subjected to any correction.
- 4. Test carried out using split spoon S, solid cone C.
- 5. Where full test drive not completed, linearly extrapolated N value reported.
- . ** Denotes no effective penetration.

CONTRACT CHECKED

35338 CT

STANDARD PENETRATION TEST

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole	borehole	s.w.p	bottom	casing	water	seating	drive	test	drive	test		energy
no.	depth (m)	(m)	depth (m)	depth (m)	level (m)	blows	pen (mm)	blows	pen (mm)	type	N	ratio (%)
BH05	21.70		21.81	4.20	2.00	25	45	100	65	С	462	76
BH06	1.75		2.20	Nil	Dry	1 0	75 75	0 0 0 0	75 75 75 75	S	<1	75
BH06	2.55		3.00	Nil	1.60	10 5	75 75	2 2 3 4	75 75 75 75	S	11	75
BH06	3.20		3.65	3.20	1.20	2 2	75 75	3 4 3 6	75 75 75 75	S	16	75
BH06	4.10		4.38	3.20	2.00	12 13	75 45	21 21 8	75 75 5	S	97	75
BH06	5.10		5.33	3.20	1.50	2 21	75 75	85 15	75 0	С	400	75
BH06	6.60		6.97	3.20	1.30	6 18	75 75	20 30 50	75 75 65	С	140	75
BH06	8.10		8.22	3.20	1.40	23 2	75 0	100	45	С	667	75
BH06	9.60		9.88	3.20	1.30	10 15	75 75	35 65	75 55	С	231	75
BH06	11.10		11.20	3.20	1.50	25	75	100	20	С	**	74
BH06	12.60		12.73	3.20	2.00	20 5	75 0	100	55	С	545	74
BH07	8.30		8.75	8.30	0.20	2 5	75 75	6 6 8 8	75 75 75 75	S	28	70
BH07	9.70		10.05	9.70	0.60	5 14	75 75	17 43 40	75 75 50	S	150	70
BH07	11.20		11.30	9.70	0.70	25	50	100	50	С	600	70
BH07	12.70		13.10	9.70	0.95	6 19	75 75	25 20 35 20	75 75 75 25	С	120	70
BH07	14.20		14.36	9.70	0.80	2 23	75 75	100	5	С	**	70
BH07	15.70		15.93	9.70	0.80	25	75	50 50	75 75	С	200	70
BH07	17.20		17.28	9.70	0.80	25	75	100	5	С	**	70
BH07	18.70		18.78	9.70	0.80	25	70	100	5	С	**	70
BH07	20.20		20.28	9.70	0.90	25	75	100	5	С	**	70
BH07	21.70		21.78	9.70	0.90	25	75	100	5	С	**	70
BH07	23.20		23.36	9.70	0.90	8 9	75 75	100	5	С	**	70
BH07	24.70		24.76	9.70	0.90	25	45	100	15	С	**	70
BH07	26.20		26.27	9.70	1.10	25	40	100	25	С	**	70

notes

- 1. Test carried out in general accordance with BS EN ISO 22476-3:2005 + A1:2011
- 2. s.w.p = self weight penetration.
- 3. N values have not been subjected to any correction.
- 4. Test carried out using split spoon S, solid cone C.
- 5. Where full test drive not completed, linearly extrapolated N value reported.
- ** Denotes no effective penetration.

CONTRACT CHECKED

35338 CT

STANDARD PENETRATION TEST

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole	borehole	s.w.p	bottom	casing	water	seating	g drive	test	drive	test		energy
no.	depth (m)	(m)	depth (m)	depth (m)	level (m)	blows	pen (mm)	blows	pen (mm)	type	N	ratio (%)
BH08	7.00		7.45	7.00	3.25	9 12	75 75	5 5 4 8	75 75 75 75	S	22	73
BH08	8.50		8.95	7.00	4.00	5 9	75 75	10 13 11 11	75 75 75 75	S	45	73
BH08	10.00		10.27	8.70	1.90	7 14	75 75	40 60	75 40	S	261	73
BH08	11.50		11.85	8.70	1.90	12 12	75 75	15 29 31	75 75 50	С	113	73
BH08	13.00		13.21	8.70	1.90	18 7	75 20	60 40	75 40	С	261	73
BH08	14.50		14.73	8.70	1.90	9 16	75 40	45 55	75 40	С	261	73
BH08	16.00		16.20	8.70	1.20	10 15	75 40	65 35	75 10	С	353	73
BH08	17.50		17.67	8.70	1.20	25	70	70 30	75 20	С	316	73
BH08	19.00		19.14	8.70	1.20	25	50	65 35	75 10	С	353	73
BH08	20.50		20.70	8.70	1.20	25	50	35 65	75 70	С	207	73
BH08	22.00		22.09	8.70	1.20	25	30	100	60	С	500	73
BH08	23.50		23.59	8.70	1.20	25	20	100	70	С	429	73
BH08	25.00		25.11	8.70	1.20	25	20	80 20	75 10	С	353	73
BH09	5.20		5.65	5.20	1.30	3 3	75 75	4 4 4 5	75 75 75 75	S	17	76
BH09	6.70		6.96	5.20	1.00	11 14	75 35	34 56 10	75 75 0	С	200	76
BH09	8.20		8.52	5.20	1.70	4 11	75 75	33 46 21	75 75 20	С	176	76
BH09	9.70		9.91	5.20	1.30	5 19	75 75	100	60	С	500	76
BH09	11.20		11.39	5.20	1.50	13 12	75 65	100	45	С	667	76
BH09	12.70		12.82	5.20	1.30	20 5	75	100	45	С	667	76
BH09	14.20		14.42	5.20	1.20	5 20	75 40	55 45	75 30	С	286	76
BH09	15.70		15.82	5.20	1.40	25	75	100	40	С	750	76
BH09	17.20		17.29	5.20	1.80	25	75	100	15	С	**	76
BH09	18.70		18.78	5.20	1.80	25	50	100	25	С	**	76
BH09	20.20		20.34	5.20	2.20	10 15	75 25	100	35	С	857	76

notes

- 1. Test carried out in general accordance with BS EN ISO 22476-3:2005 + A1:2011
- 2. s.w.p = self weight penetration.
- 3. N values have not been subjected to any correction.
- 4. Test carried out using split spoon S, solid cone C.
- 5. Where full test drive not completed, linearly extrapolated N value reported.
 - . ** Denotes no effective penetration.

CONTRACT	CHECKED
35338	СТ

STANDARD PENETRATION TEST

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole	borehole	s.w.p	bottom	casing	water	seatin	g drive	test	drive	test		energy
no.	depth (m)	(m)	depth (m)	depth (m)	level (m)	blows	pen (mm)	blows	pen (mm)	type	N	ratio (%)
BH09	21.70		21.80	5.20	2.00	25	50	100	50	С	600	76
BH09	23.20		23.26	5.20	2.50	25	45	100	15	С	**	76
BH10	1.70		2.15	Nil	1.10	1 1	75 75	1 1 1 1	75 75 75 75	S	4	76
BH10	2.20		2.65	Nil	1.50	1 1	75 75	1 2 2 2	75 75 75 75	S	7	76
BH10	3.70		4.15	3.20	1.20	1	150	1 1	75225	S	2	76
BH10	5.75		6.20	5.20	2.00	1	75 75	1 1 1	75 75 75 75	S	3	76
BH10	6.70		7.15	6.70	1.30	2 2	75 75	4 5 6 6	75 75 75 75	S	21	76
BH10	8.20		8.65	8.20	1.40	7 12	75 75	7 7 4 4	75 75 75 75	S	22	76
BH10	9.70		10.14	8.20	1.20	7 15	75 75	20 25 30 25	75 75 75 60	С	105	76
BH10	11.20		11.44	8.20	1.30	20 5	75 10	45 50 5	75 75 5	С	194	76
BH10	12.50		12.73	8.20	1.20	13 12	75 50	70 30	75 25	С	300	76
BH10	14.00		14.15	8.20	1.40	14 11	75 5	100	65	С	462	76
BH10	15.50		15.76	8.20	1.30	25	75	33 33 34	75 75 35	С	162	76
BH10	17.00		17.10	8.20	1.40	25	55	100	45	С	667	76
BH10	18.50		18.70	8.20	1.40	23 2	75	55 45	75 50	С	240	76
BH10	20.00		20.21	8.20	2.80	15 10	75 10	50 50	75 45	С	250	76
BH10	21.50		21.60	8.20	1.30	25	50	100	50	С	600	76
BH10	23.00		23.10	8.20	1.80	25	55	100	45	С	667	76
BH10	24.50		24.59	8.20	1.70	25	35	100	55	С	545	76
BH10	26.00		26.07	8.20	2.20	25	30	100	40	С	750	76
BH11	1.20		1.65	Nil	Dry	1 0	75 75	1 0 0 0	75 75 75 75	S	1	73
BH11	2.70		3.15	Nil	2.00	2 0	75 75	0 0 0 0	75 75 75 75	S	<1	73
BH11	3.20		3.65	3.20	1.60	1 0	75 75	0 0 0 0	75 75 75 75	S	<1	73
BH11	4.70		5.15	4.20	1.20	2 0	75 75	0 0 0 0	75 75 75 75	S	<1	73

notes

- 1. Test carried out in general accordance with BS EN ISO 22476-3:2005 + A1:2011
- 2. s.w.p = self weight penetration.
- 3. N values have not been subjected to any correction.
- 4. Test carried out using split spoon S, solid cone C.
- 5. Where full test drive not completed, linearly extrapolated N value reported.
- ** Denotes no effective penetration.

35338	СТ
CONTRACT	CHECKED

STANDARD PENETRATION TEST

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

orehole	borehole	s.w.p	bottom	casing	water		g drive	test		test		energ
no.	depth (m)	(m)	depth (m)	depth (m)	level (m)	blows	pen (mm)	blows	pen (mm)	type	N	ratio (%)
BH11	5.20		5.65	5.20	1.20	1 0	75 75	0 0 0 0	75 75 75 75	S	<1	73
BH11	6.70		7.15	6.70	1.20	2 0	75 75	2 0 0 0	75 75 75 75	S	2	73
BH11	8.20		8.65	8.20	1.20	2 3	75 75	2 5 4 8	75 75 75 75	S	19	73
BH11	9.70		10.15	9.70	1.20	2 3	75 75	4 4 4 4	75 75 75 75	S	16	73
BH11	11.20		11.65	11.20	1.20	6 3	75 75	4 4 6 9	75 75 75 75	S	23	73
BH11	12.40		12.72	11.20	1.65	8 17	75 65	39 48 13	75 75 25	S	171	73
BH11	13.90		14.33	11.60	1.20	13 12	75 55	17 13 13 24	75 75 75 75	С	67	73
BH11	15.40		15.68	11.60	1.50	7 12	75 75	13 87	75 50	С	240	73

notes

- 1. Test carried out in general accordance with BS EN ISO 22476-3:2005 + A1:2011
- 2. s.w.p = self weight penetration.
- 3. N values have not been subjected to any correction.
- 4. Test carried out using split spoon S, solid cone C.
- 5. Where full test drive not completed, linearly extrapolated N value reported.
- ** Denotes no effective penetration.

CONTRACT CHECKED
35338 CT

IN-SITU HAND VANE/POCKET PENETROMETER

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole /trial pit no.	depth (m)	hand vane peak (kPa)	average hand vane peak (kPa)	hand vane remoulded (kPa)	average hand vane remoulded (kPa)	pocket penetrometer (kg/cm²)	average pocket penetrometer (kPa)*	remarks
BH02	1.80	13	13	2	2			
BH02	1.90	9	9	2	2			
BH02	6.25	94	94	18	18			
BH02	6.35	84	84	20	20			
BH02	6.50	86	86	18	18			
BH03	2.90	120	120	22	22			
BH03	3.00	112	112	24	24			
ВН03	3.10	114	114	26	26			
BH05	1.85	38 52 64	51	12 14 20	15			
BH05	3.00	64 22 24 24	23	20 10 8 6	8			
BH06	2.05	24 10 12	11	6 2 3	3			
BH06	2.45	18 22	20	10 14	12			
BH06	3.85	>140						
BH06	4.00	110	110					
BH07	3.20	10	10	2	2			
BH08	1.70	10	10	3	3			
BH08	1.85	14	14	4	4			
BH08	2.00	16	16	3	3			

general remarks:

Hand vane test results reported as undrained shear strength.

*Average pocket penetrometer results reported as undrained shear strength.

35338

CHECKED CT

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 4/9/19

IN-SITU HAND VANE/POCKET PENETROMETER

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole /trial pit no.	depth (m)	hand vane peak (kPa)	average hand vane peak (kPa)	hand vane remoulded (kPa)	average hand vane remoulded (kPa)	pocket penetrometer (kg/cm²)	average pocket penetrometer (kPa)*	remarks
BH08	5.80	10	10	3	3			
BH08	8.15	28	28	8	8			
BH08	8.25	34	34	12	12			
BH10	2.75	14	14	2	2			
BH10	3.10	10	10	2	2			
BH10	3.90	18 20 14	17	8 6 4	6			
BH10	7.70	52	52	12	12			
BH10	7.90	94	94	20	20			
BH10	8.80	110 96	103	18 14	16			
TP05	0.75	74 69 73	72					
TP05	1.50	30 24	27					
TP05	2.00	25 23	24					
TP06	0.75	103 90 99	97					
TP06	1.00	72 72	72					
TP06	2.30	65 52 46	54					
TP07	0.40	98 101	100					
TP07	0.60	78 84	81					
TP07	1.20	46 37	42					

general remarks:

Hand vane test results reported as undrained shear strength.

*Average pocket penetrometer results reported as undrained shear strength.

35338

CHECKED CT

IN-SITU HAND VANE/POCKET PENETROMETER

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole /trial pit no.	depth (m)	hand vane peak (kPa)	average hand vane peak (kPa)	hand vane remoulded (kPa)	average hand vane remoulded (kPa)	pocket penetrometer (kg/cm²)	average pocket penetrometer (kPa)*	remarks
TP07	2.60	28 22 28	26					
ГР07	3.00	36 39	38					
ГР08	0.60	120 128 130	126					
ГР08	1.00	65 64	65					
ГР08	2.10	36 40 34	37					
TP09	0.25	68	68					
TP09	0.40	74 112	93					
TP09	1.30	24 26 20	23					
TP09	2.80	18 32	25					
TP09	3.40	21 15	18					

Hand vane test results reported as undrained shear strength.

*Average pocket penetrometer results reported as undrained shear strength.

35338

CHECKED CT

Geotechnical Engineering Ltd, Tel. 01452 527743 35338 MASTER,GPJ TRIALJH,GPJ GEOTECH2.GLB 4/9/19

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet

Start Date

17 June 2019

Easting 325240 Scale 1:25

End Date 17 June 2019 Northing 180760 Ground level 5.30mOD Depth 1.20 m

water		sample/t		description	depth	level	legend
record	no/type	result	depth (m)		(m)	(m)	logeriu
				Grass over firm dark brown slightly gravelly clayey SILT with rare pockets (up to 10mm) of orangish brown fine and medium sand and brown clay. Gravel is subangular to subrounded fine and medium brick and mudstone. Abundant rootlets. (MADE GROUND)	0.20	5.10	
	1B		0.50- 0.70	Firm light bluish grey mottled light brown CLAY with frequent pockets (up to 20mm) of soft brown clay and rare pockets of reddish brown fine and medium sand (up to 5mm). Frequent roots (up to 3mm diam) and rootlets.	- - -		
	20		4.00, 4.00		-		
1.20m:	2B		1.00- 1.20		1.20	4.10	
Seepage.				Trial pit completed at 1.20m.	_ 1.20 _	4.10	
Notes			•	Sketch of Foundation - Not to scale. All dim	ensions	in metr	AS

Notes

Trial pit excavated using hand tools in advance of CPT01.

A seepage of groundwater was encountered at 1.20m.

Trial pit sides remained stable.

Trial pit dimensions 0.20x0.20x1.20m.

On completion, the trial pit was backfilled and the surface reinstated.

Sketch of Foundation - Not to scale. All dimensions in metres.

CONTRACT **CHECKED** 35338 CT

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

EC

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 1 of 1

Start Date 17 June 2019 Easting 325414 Scale 1:25

End Date 17 June 2019 Northing 180803 Ground level 4.95mOD Depth 1.20 m

water		sample/t		description	depth	level	legend
record	no/type	result	depth (m)		(m)	(m)	logenu
				Grass over soft dark brown silty CLAY with frequent pockets (up to 10mm) of bluish grey and organish brown clay and rare pockets (up to 5mm) of black organic material. Abundant rootlets. (MADE GROUND/REWORKED NATURAL DEPOSITS) Firm light bluish grey mottled greyish brown and orangish brown CLAY with	0.15	4.80	×
	1B		0.50- 0.70	frequent pockets (up to 5mm) of black organic material and rare pockets (up to 15mm) of dark brown clay and reddish brown fine and medium sand. Frequent rootlets.	- - -		
1.20m:	2B		1.00- 1.20		1.20	3.75	
Seepage.				Trial pit completed at 1.20m.	_ 1.20 _	3.73	
Notes				Sketch of Foundation - Not to scale. All dim			

Notes

Sketch of Foundation - Not to scale. All dimensions in metres.

Trial pit excavated using hand tools in advance of CPT02. A seepage of groundwater was encountered at 1.20m.

Trial pit sides remained stable.

Trial pit dimensions 0.20x0.15x1.20m.

On completion, the trial pit was backfilled and the surface reinstated.

CONTRACT **CHECKED** 35338 CT

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

1:25

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 1 of 1

Scale

Start Date 17 June 2019 Easting 325294

End Date 17 June 2019 Northing 180730 Ground level 5.40mOD Depth 1.20 m

water		sample/t		description	depth	level	legend
record	no/type	result	depth (m)	·	(m)	(m)	
				Grass over brown mottled organish brown slightly sandy SILT with rare pockets (up to 10mm) of orangish brown fine and medium sand and black organic material (up to 5mm). Abundant rootlets. (MADE GROUND/REWORKED NATURAL DEPOSITS) Firm light bluish grey mottled brown and orangish brown CLAY with frequent pockets (up to 5mm) of black organic material and rare wood fragments (up to	0.25	5.15	× × × × × × × × × × × × × × × × × × ×
	1B		0.50- 0.70	15mm). Frequent rootlets.	- - - -		
1.20m: Dry.	2B		1.00- 1.10		1.20	4.20	
				Trial pit completed at 1.20m.			
Notes	1	ı	1	Sketch of Foundation - Not to scale. All dim	ensions	in metro	es.

Trial pit excavated using hand tools in advance of CPT03.

Groundwater not encountered.

Trial pit sides remained stable.

Trial pit dimensions 0.20x0.20x1.20m.

On completion, the trial pit was backfilled and the surface reinstated.

CONTRACT **CHECKED** 35338 CT

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

Geotechnical Engineering Ltd, Tel. 01452 527743

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

CF IU

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 1 of 1

Start Date 17 June 2019

Easting 325195

Scale 1 : 25

End Date 17 June 2019 Northing 180664 Ground level 5.25mOD Depth 1.20 m

water		sample/t	est	description	depth	level	legend
record	no/type	result	depth (m)	description	(m)	(m)	legend
	40		0.50.0.70	Grass over brown mottled organish brown slightly sandy SILT with rare pockets (up to 10mm) of orangish brown fine and medium sand and soft brown clay. Abundant rootlets. (MADE GROUND/REWORKED NATURAL DEPOSITS) Firm light bluish grey mottled brown and orangish brown silty CLAY with frequent pockets (up to 15mm) of brown clay and black organic material. Frequent rootlets	0.35	4.90	× × × × × × × × × × × × × × × × × × ×
	1B 2B		1.00- 1.20	and rare roots (up to 5mm diam). 0.90m: Frequent partially decomposed roots (up to 5mm diam).	- - - -		
1.20m: Seepage.				Trial pit completed at 1.20m.	1.20 _	4.05	
Notes				Sketch of Foundation - Not to scale. All dim	onsions	in mot-	

Notes

Sketch of Foundation - Not to scale. All dimensions in metres.

Trial pit excavated using hand tools in advance of CPT04. A seepage of groundwater was encountered at 1.20m.

Trial pit sides remained stable.

Trial pit dimensions 0.20x0.20x1.20m.

On completion, the trial pit was backfilled and the surface reinstated.

AGS

CONTRACT CHECKED

35338 CT

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

EC

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

01 100

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 1 of 1

Start Date 17 June 2019 Easting 325097

Scale 1:25

End Date 17 June 2019 Northing 180592 Ground level 5.25mOD Depth 1.20 m

water		sample/t		description	depth	level	legend
record	no/type	result	depth (m)	description	(m)	(m)	legend
				Grass over firm brown mottled organish brown slightly gravelly clayey SILT with rare pockets (up to 10mm) of orangish brown fine and medium sand, brown clay and black organic material. Gravel is subangular and subrounded fine and medium mudstone and brick. Abundant rootlets. (MADE GROUND)	0.15	5.10	
	1B		0.50- 0.70	Firm light bluish grey mottled brown and orangish brown silty CLAY with frequent pockets (up to 5mm) of soft brown clay and black organic material. Frequent rootlets and rare roots (up to 5mm diam).	- - -		
					0.90	4.35	
	2B		1.00- 1.20	Soft brownish grey mottled orangish brown CLAY with rare wood fragments (up to 10mm). Frequent rootlets and rare roots (up to 5mm diam).	0.90 _	4.35	
1.20: Dry.					1.20	4.05	
				Trial pit completed at 1.20m.			
Natas				Cleately of Foundation, Not to pools, All disp			

Notes

Sketch of Foundation - Not to scale. All dimensions in metres.

Trial pit excavated using hand tools in advance of CPT05.

Groundwater was not encountered.

Trial pit sides remained stable.

Trial pit dimensions 0.20x0.20x1.20m.

On completion, the trial pit was backfilled and the surface reinstated.

AGS

CONTRACT CHECKED

35338 CT

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

01 10

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 1 of 1

Start Date 17 June 2019

Easting 325072

Scale 1 : 25

End Date 17 June 2019 Northing 180694 Ground level 5.10mOD Depth 1.20 m

water		sample/t	est	description	depth	level	legend
record	no/type	result	depth (m)	·	(m)	(m)	legeriu
				Grass over soft dark brown silty CLAY with rare pockets (up to 10mm) of orangish brown fine and medium sand and soft bluish grey clay. Abundant roots (up to 5mm diam.) and rootlets. (MADE GROUND/REWORKED NATURAL DEPOSITS) Firm light bluish grey mottled light brown and orangish brown CLAY with rare pockets (up to 15mm) of soft brown clay and reddish brown fine and medium	0.10 _	5.00	×
	1B		0.50- 0.70	sand. Frequent roots (up to 3mm diam) and rootlets.	- - -		
					1.00	4.10	
1.20m:	2B		1.00- 1.20	Soft dark grey slightly sandy CLAY with frequent pockets (up to 40mm) of firm dark brown fibrous peat and rare pockets (up to 20mm) of soft bluish grey clay.	1.20	3.90	
Seepage.				Trial pit completed at 1.20m.			

Notes

Sketch of Foundation - Not to scale. All dimensions in metres.

Trial pit excavated using hand tools in advance of CPT06. A seepage of groundwater was encountered at 1.20m.

Trial pit sides remained stable.

Trial pit dimensions 0.20x0.20x1.20m.

On completion, the trial pit was backfilled and the surface reinstated.

AGS

CONTRACT CHECKED

35338 CT

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

11 0

1:25

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 1 of 1

Scale

Start Date 18 June 2019

Easting 325072

End Date 18 June 2019 Northing 180678 Ground level 5.05mOD Depth 2.90 m

water		sample/to		description	depth	level	legend
record	no/type	result	depth (m)	·	(m)	(m)	logono
	1ES		0.00- 0.10	Reddish brown sandy clayey angular to subrounded fine to coarse sandstone and rare mudstone GRAVEL. (MADE GROUND) Firm bluish grey mottled brown silty CLAY with rare fragments of decomposing plant material. Frequent rootlets.	0.25	4.80	
	1B		0.50- 0.70		_		
	2D		0.50- 0.70				
		H 72	0.75		_		×
	3B		1.00- 1.20		_		×
	4D		1.00- 1.20		_		×
					-		x
.50m: Flow.	5B	H 27	1.50- 1.70	Soft dark brown organic silty CLAY with a strong organic odour and frequent decomposing plant material.	1.50 _	3.55	<u>× </u>
	6D		1.50- 1.70	Very soft to soft bluish grey rarely mottled brown CLAY with frequent fragments of decomposing plant material.	1.70 _	3.35	
		H 24	2.00	decomposing plant material.	- -		
		1124	2.00		-		
					-		
	7B		2.50- 2.70		_		
	8D		2.50- 2.70		_		
2.80m.					2.90	2.15	
				Trial pit completed at 2.90m.			

Notes

Sketch of Foundation - Not to scale. All dimensions in metres.

Trial pit excavated by CAT 432 mechanical excavator.

Groundwater encountered at 1.50m.

Trial pit sidewalls spalling.

Trial pit dimensions 2.40x0.80x2.90m.

Pit terminated due to water ingress and sidewall instability.

On completion, the trial pit was backfilled with materials arising.

AGS

CONTRACT CHECKED

35338 CT

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

11 0

1 of 2

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Start Date 18 June 2019 Easting 325052

Scale 1 : 25

Sheet

End Date 18 June 2019 Northing 180881 Ground level 5.50mOD Depth 4.10 m

water		sample/t		description	depth	level	legend
record	no/type	result	depth (m)	· ·	(m)	(m)	legend
				Grass over soft brown slightly sandy silty CLAY. Abundant rootlets and rare roots (up to 3mm diam).	0.15	5.35	× -
				Very stiff brown mottled bluish grey silty CLAY with frequent pockets (up to 4mm)	-		× -
				of black organic silt. Frequent rootlets and relict rootlets.	-		×
							× ×
	1B		0.50- 0.70		_		
	2D		0.50- 0.70		_		<u>×</u> _×
		H 97	0.75		-		× ×
					-		x
	3B	H 72	1.00- 1.20		_		× -
	4D		1.00- 1.20		_		
					-		
					-		× ×
1.55m:				1.55m: 300mm bed of very soft dark brown silty clay with decaying plant material.	4.05	0.05	
Seepage.				Soft locally stiff dark reddish brown slightly sandy slightly gravelly silty CLAY with	1.65	3.85	
				a low subrounded sandstone cobble content. Frequent pockets of yellowish brown fine to coarse sand. Gravel is subangular and subrounded fine to coarse	_		
				sandstone and rare quartzite.	-		
					_		
	5B 6D	H 54	2.20- 2.40 2.20- 2.40		_		200
	00		2.20- 2.40		-		
					-		-0
							700
					_		
				Soft dark reddish brown slightly gravelly sandy CLAY with frequent pockets (up to	2.90 _	2.60	
				80mm) of bluish grey silty clay and thin beds of very soft dark reddish brown silty	_		<u> </u>
				clay. Frequent relict rootlets.			
	7B		3.00- 3.20				-
	8D		3.00- 3.20		-		
					-		<u> </u>
					-		
							<u></u>
	9B		2.00.4.40		_		
	ı 9K ∣		3.90- 4.10		i		1

Notes

В

35338 MASTER.GPJ TRIALJH.GPJ GEOTECH2.GLB 04/09/2019 12:16:15 MC

Geotechnical Engineering Ltd, Tel. 01452 527743

Trial pit excavated by CAT 432 mechanical excavator.

Groundwater seepage at 1.55m and 4.10m.

Trial pit sides remained stable and vertical.

Trial pit dimensions 2.20x0.70x4.10m.

On completion, the trial pit was backfilled with materials arising.

Sketch of Foundation - Not to scale. All dimensions in metres.

CONTRACT CHECKED

35338 CT

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

11 00

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 2 of 2

Start Date 18 June 2019 Easting 325052

Scale 1 : 25

End Date 18 June 2019 Northing 180881 Ground level 5.50mOD Depth 4.10 m

water		sample/t		description	depth		legeno
record	no/type	result	depth (m)	uescription	(m)	(m)	legent
	10D		3.90- 4.10		4.10 _	1.40	
4.10m:				Trial pit completed at 4.10m.	_		
Seepage.							

Notes

Sketch of Foundation - Not to scale. All dimensions in metres.

Trial pit excavated by CAT 432 mechanical excavator. Groundwater seepage at 1.55m and 4.10m.

Trial pit sides remained stable and vertical.

Trial pit dimensions 2.20x0.70x4.10m.

On completion, the trial pit was backfilled with materials arising.

AGS

CONTRACT CHECKED

35338 CT

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

...

1 of 1

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet

Start Date 18 June 2019 Easting 325347

Scale 1 : 25

End Date 18 June 2019 Northing 180979 Ground level 5.20mOD Depth 4.00 m

water		sample/t		description	depth	level	legend
record	no/type	result	depth (m)	description	(m)	(m)	legend
				Vegetation over soft dark brown slightly sandy silty CLAY. Frequent rootlets.	_		_ x
				First deal blaich assessment of house 2th OLAV with assessment for the County of	0.20	5.00	*
				Firm dark bluish grey mottled brown silty CLAY with rare pockets (up to 6mm) of yellowish brown sandy silt and frequent fragments of decomposing plant materia	ı. -		
		H 100	0.40	Frequent rootlets and rare roots (up to 3mm diam).	-		× ×
	1B	H 81	0.50- 0.70		-		<u></u>
	2D		0.50- 0.70				
					-		
					-		<u></u>
	3B	H 42	1.00- 1.20		-		× -
	4D		1.00- 1.20		-	_	×
							× 1
				4.50. 4.70m. Firm block along records fibrary post in court of the	-		<u></u>
				1.50 - 1.70m: Firm black clayey pseudofibrous peat in south east face.	1.65	3.55	X
				Very soft dark bluish grey CLAY with frequent fragments of decomposing plant material.	-	-	
				material.			
	5B 6D		2.00- 2.20		-		
	ם פ		2.00- 2.20		-	-	
					-		
					-		
		H 26	2.60		-		
					-		
					-		
3.00m:	7B	H 38	3.00- 3.20		_		
Seepage.	8D		3.00- 3.20				
					_		<u> </u>
					-	-	
					-		
					-	1	[-]
					-		
	9B		3.80- 4.00				
Damp.	10D		3.80- 4.00	Trial rit convoluted at 4 00m	4.00	1.20	<u> </u>
Notes				Trial pit completed at 4.00m. Sketch of Foundation - Not to scale. All d	imensions	in metr	es.

Trial pit excavated by CAT 432 mechanical excavator.

Groundwater seepage at 3.00m.

Trial pit sides remained stable and vertical.

Trial pit dimensions 2.20x0.70x4.00m.

On completion, the trial pit was backfilled with materials arising.

AGS

CONTRACT CHECKED

35338 CT

TRIAL PIT LOG

End Date

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

11 0

1 of 2

1:25

4.10 m

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Start Date 17 June 2019 E

17 June 2019

Easting 324929

181196

Ground level

Northing

Sheet

Scale

Depth

5.80mOD

sample/test depth water level description legend depth (m) (m) record no/type result (m) Firm brown slightly sandy silty CLAY. Frequent rootlets. 0.25 5.55 Stiff becoming firm bluish grey mottled brown slightly sandy silty CLAY with rare pockets (up to 30mm) of black organic silt. Frequent rootlets. 1B H 126 0.50-0.60 2D 0.50-0.60 H 65 1.00 1.40 Soft dark reddish brown slightly gravelly sandy silty CLAY with frequent pockets (up to 40mm) of black organic material and yellowish brown fine to coarse sand. 3В 1.50- 1.60 Gravel is subrounded and rounded fine to coarse sandstone. Rare rootlets. 1.50- 1.60 4D H 37 5B 2.00-2.20 6D 2.00-2.20 7B 3.00-3.20 8D 3.00-3.20 3.60 2.20 Soft dark reddish brown sandy gravelly CLAY with a low subrounded sandstone

cobble content. Rare pockets (up to 60mm) of bluish grey clay. Gravel is angular

to rounded fine to coarse sandstone.

Notes

3.70m: Flow.

Trial pit excavated by CAT 432 mechanical excavator.

Groundwater encountered at 3.70m.

Trial pit sides remained stable and vertical.

Trial pit dimensions 2.30x0.70x4.10m.

On completion, the trial pit was backfilled with materials arising.

Sketch of Foundation - Not to scale. All dimensions in metres.

AGS

CONTRACT CHECKED

35338 CT

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

Geotechnical Engineering Ltd, Tel. 01452 527743

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 2 of 2

Start Date 17 June 2019 Easting 324929 Scale 1:25

181196 **End Date** 17 June 2019 Northing Ground level 5.80mOD Depth 4.10 m

water		sample/t		description	depth	level	logen
record	no/type	result	depth (m)	description	(m)	(m)	legen
	9B		4.00- 4.10		4.10	1.70	
3.90m	10D		4.00- 4.10	Trial pit completed at 4.10m.		0	
lotes			I	Sketch of Foundation - Not to scale. All dim			

Notes

Sketch of Foundation - Not to scale. All dimensions in metres.

Trial pit excavated by CAT 432 mechanical excavator.

Groundwater encountered at 3.70m.

Trial pit sides remained stable and vertical.

Trial pit dimensions 2.30x0.70x4.10m.

On completion, the trial pit was backfilled with materials arising.

CONTRACT **CHECKED** 35338 CT

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

В

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 1 of 2

Start Date 17 June 2019 Easting 325144 Scale 1:25

End Date 17 June 2019 Northing 181417 Ground level 4.95mOD Depth 4.10 m

				description			leg
record	no/type	result	depth (m)	description	(m)	(m)	100
				Stiff brown and bluish grey mottled slightly sandy silty CLAY. Frequent rootlets.			× .
					-		-
					-	4.05	×
		H 68	0.25	0	0.30 _	4.65	
				Stiff bluish grey mottled brown silty CLAY with rare pockets (up to 1.00x0.80m) of	_		<u> </u>
		H 93	0.40	dark brown slightly sandy slightly gravelly organic silt. Frequent decomposing plant material and wood fragments (up to 400mm).	_		×
	1B		0.50- 0.70	plant material and wood magnifins (up to 400mm).			
	2D		0.50- 0.70		_		×.
					0.00	4 4 5	ļ
				Variant bluib are contiled bracks OLAV with fragment decomposition plant	0.80 _	4.15	×
				Very soft bluish grey mottled brown CLAY with frequent decomposing plant material and wood fragments (up to 500mm).	_		<u> </u>
	3B		0.90- 1.00	I material and wood fragments (up to sooniin).			
	4D		0.90- 1.00				<u></u>
							<u> </u>
.20m:				1.20 - 1.50m: 300mm bed of very soft dark brown organic silty clay with abundant	_		
Seepage.		H 23	1.30	plant material.	-		\vdash
		1120	1.00	·	_		-
					_		-
					_		
							<u></u>
					_		ļ
					-		<u> </u>
	5B		1.90- 2.20		-		+
	6D						-
	60		1.90- 2.20		_		-
					_		
					2.30	2.65	_
				Very soft bluish grey mottled brown CLAY with rare decomposing plant material			<u> </u>
				and wood fragments (up to 20mm).	_		
					-		-
					-		-
					_		<u> </u>
					_		
	7B	H 25	2.80- 3.30		_		<u> </u>
	8D		2.80- 3.30				<u> </u>
							\vdash
					-		-
					-		1-
					_		<u> </u>
					_		
		H 18	3.40		_		<u> </u>
							<u> </u>
					_		
					2.00	4 4 5	H
	9B		3.80- 4.10	Coff dark brown and bluigh grow poets CLAV with a strong arrania ad-	3.80 _	1.15	H
				Soft dark brown and bluish grey peaty CLAY with a strong organic odour. Frequent fragments of decomposing wood (up to 40mm) and decomposing plant	_		E
	10D		3.80- 4.10	requests tragments of decomposing wood (up to 40mm) and decomposing plant			$-\overline{7}$
Notes				Sketch of Foundation - Not to scale. All dime	ensions	in metr	es

Geotechnical Engineering Ltd, Tel. 01452 527743

Groundwater seepage encountered at 1.20m.

Trial pit sidewalls spalling below 3.00m.

Trial pit dimensions 2.20x0.70x4.10m.

On completion, the trial pit was backfilled with materials arising.

CONTRACT **CHECKED** 35338 CT

17 June 2019

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

11 00

1:25

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 2 of 2

Start Date 17 June 2019

End Date

Easting 325144

181417

Ground level

4.95mOD

Northing

Depth 4.10 m

Scale

water		sample/te	est	des estations	depth	level	
record	no/type	result	depth (m)	description	(m)	(m)	leger
				material.	4.10 _	0.85	
l.10m				Trial pit completed at 4.10m.	_		

Notes

Sketch of Foundation - Not to scale. All dimensions in metres.

Trial pit excavated by CAT 432 mechanical excavator.

Groundwater seepage encountered at 1.20m.

Trial pit sidewalls spalling below 3.00m.

Trial pit dimensions 2.20x0.70x4.10m.

On completion, the trial pit was backfilled with materials arising.

AGS

CONTRACT CHECKED

35338 CT

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

В

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

- - - -

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Sheet 1 of 1

Start Date 17 June 2019

Easting 325242

Scale 1 : 25

End Date 17 June 2019 Northing 180761 Ground level 5.35mOD Depth 1.20 m

water		sample/t	est	description	depth	level	legend
record	no/type	result	depth (m)	description	(m)	(m)	legenu
				Grass over firm dark brown slightly gravelly clayey SILT with rare pockets of orangish brown fine and medium sand (up to 10mm) and soft brown clay (up to 5mm). Gravel is subangular to subrounded fine and medium brick and mudstone. Abundant rootlets. (MADE GROUND)	0.20	5.15	
	1B		0.50- 0.70	Firm light bluish grey mottled light brown CLAY with frequent pockets (up to 20mm) of soft brown clay and rare pockets (up to 5mm) of reddish brown fine and medium sand. Frequent roots (up to 3mm diam) and rootlets.	_ _ _		
					_ _ _		
1.20m: Dry.	2B		1.00- 1.20		1.20	4.15	
				Trial pit completed at 1.20m.			
Natas				Cleated of Foundation, Not to cook All disc			

Notes

Sketch of Foundation - Not to scale. All dimensions in metres.

Trial pit excavated using hand tools in advance of VS01.

Groundwater was not encountered.

Trial pit sides remained stable.

Trial pit dimensions 0.20x0.20x1.20m.

On completion, the trial pit was backfilled and the surface reinstated.

AGS

CONTRACT CHECKED

35338 CT

17 June 2019

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

1 of 1

1:25

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Start Date 17 June 2019

End Date

Easting 325412

180801

Ground level

Northing

4.95mOD Depth 1.20 m

Sheet

Scale

water		sample/to		- description	depth	level	legend
record	no/type	result	depth (m)	description	(m)	(m)	legeriu
				Grass over soft dark brown silty CLAY with frequent pockets (up to 10mm) of soft bluish grey and organish brown clay and rare pockets (up to 5mm) of black organic material. Abundant rootlets. (MADE GROUND?)	0.10 _	4.85	×
	1B		0.50- 0.70	Firm light bluish grey mottled greyish brown and orangish brown CLAY with frequent pockets (up to 5mm) of black organic material and rare pockets (up to 15mm) of soft purplish brown clay and reddish brown fine and medium sand. Frequent rootlets.	- - - -		
1.10m: Seepage.	2B		1.00- 1.15		1.15	3.80	
Зеерауе.				Firm dark grey orangic CLAY with frequent pockets (up to 40mm) of fibrous peat and rare pockets (up to 20mm) of soft bluish grey clay.	1.20 -	3.75	
				Trial pit completed at 1.20m.			

Notes

Sketch of Foundation - Not to scale. All dimensions in metres.

Trial pit excavated using hand tools in advance of VS02. A seepage of groundwater was encountered at 1.10m.

Trial pit sides remained stable.

Trial pit dimensions 0.20x0.20x1.20m.

On completion, the trial pit was backfilled and the surface reinstated.

CONTRACT **CHECKED** 35338 CT

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

1 of 1

1:25

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Start Date 17 June 2019 Easting

Sheet

Scale

End Date 17 June 2019 Northing 180728 Ground level 5.40mOD Depth 1.20 m

325292

water		sample/to		description	depth	level	legen
record	no/type	result	depth (m)	decomption	(m)	(m)	
	1B		0.50- 0.70	Grass over brown mottled organish brown slightly sandy SILT with rare pockets (up to 10mm) of orangish brown fine and medium sand and black organic material. Abundant rootlets. (MADE GROUND/REWORKED NATURAL DEPOSITS) Firm light bluish grey mottled brown and orangish brown CLAY with frequent pockets of black carbonaceous material (up to 5mm) and rare wood fragments (up to 15mm). Frequent rootlets.	0.30 _	5.10	× × × × × × × × × × × × × × × × × × ×
	2B		1.00- 1.20		- - - -		
.20m: Dry.					1.20	4.20	
,				Trial pit completed at 1.20m.			

Trial pit excavated using hand tools in advance of VS03. A seepage of groundwater was encountered at 1.20m. Trial pit sides remained stable.

Trial pit dimensions 0.20x0.20x1.20m.

On completion, the trial pit was backfilled and the surface reinstated.

CONTRACT **CHECKED** 35338 CT

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

Geotechnical Engineering Ltd, Tel. 01452 527743

17 June 2019

TRIAL PIT LOG

End Date

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

1 of 1

1:25

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Northing

180663

Ground level

5.10mOD

Sheet

Start Date 17 June 2019 Easting 325193

Depth 1.20 m

Scale

water		sample/to		description	depth	level	legen
record	no/type	result	depth (m)	uescription	(m)	(m)	legen
				Grass over brown mottled organish brown slightly sandy SILT with rare pockets (up to 10mm) of orangish brown fine and medium sand, brown clay and black organic material. Abundant rootlets. (MADE GROUND/REWORKED NATURAL DEPOSITS)	0.20	4.90	× × × × × × × × × × × × × × × × × × ×
	1B		0.50- 0.70	Soft light bluish grey mottled brown and orangish brown silty CLAY with frequent pockets (up to 5mm) of soft brown clay and black organic material. Frequent rootlets and rare roots (up to 5mm diam).	- -		
					- -		
.20m: Dry.	2B		1.00- 1.20		1.20	3.90	
.20111. Dry.				Trial pit completed at 1.20m.	0	0.00	
				Sketch of Foundation - Not to scale. All dim			

Trial pit excavated using hand tools in advance of VS04. A seepage of groundwater was encountered at 1.20m.

Trial pit sides remained stable.

Trial pit dimensions 0.20x0.20x1.20m.

On completion, the trial pit was backfilled and the surface reinstated.

CONTRACT **CHECKED** 35338 CT

EXPLORATORY HOLE LOGS SHOULD BE READ IN CONJUNCTION WITH KEY SHEETS

EC

TRIAL PIT LOG

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

1:25

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION Sheet 1 of 1

Start Date 17 June 2019 Easting 325096

Scale

End Date 17 June 2019 Northing 180591 Ground level 5.30mOD Depth 1.20 m

water		sample/t	est	description	depth	level	legend
record	no/type	result	depth (m)	description	(m)	(m)	legene
				Grass over firm brown mottled organish brown slightly gravelly clayey SILT with rare pockets (up to 10mm) of orangish brown fine and medium sand, brown clay and black organic material (up to 5mm). Gravel is subangular and subrounded fine to coarse brick and mudstone. (MADE GROUND)	0.15	5.15	
	1B		0.50- 0.70	Firm light bluish grey mottled brown and orangish brown silty CLAY with frequent pockets (up to 5mm) of soft brown clay and black organic material. Frequent rootlets and rare roots (up to 5mm diam).	- -		
				Soft brownish grey mottled orangish brown CLAY with rare wood fragments (up to	0.90	4.40	
	2B		1.00- 1.20	10mm). Frequent rootlets and rare roots (up to 5mm diam).			
1.20m: Dry.				Trial pit completed at 1.20m.	1.20 _	4.10	
Votes			1	Sketch of Foundation - Not to scale. All dim			

Notes

Sketch of Foundation - Not to scale. All dimensions in metres.

Trial pit excavated using hand tools in advance of VS05. A seepage of groundwater was encountered at 1.20m. Trial pit sides remained stable.

Trial pit dimensions 0.20x0.20x1.20m.

On completion, the trial pit was backfilled and the surface reinstated.

CONTRACT **CHECKED** 35338 CT

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH01	16/07/19 14:20:15			0.2	0.0	7.9	0.0	0	0	0.0				
BH01	16/07/19 14:20:30			0.2	0.0	7.8	0.0	0	0	0.0				
BH01	16/07/19 14:20:45			0.2	0.0	7.8	0.0	0	0	0.0				
BH01	16/07/19 14:21:00			0.2	0.0	7.8	0.0	0	0	0.0				
BH01	16/07/19 14:21:15			0.2	0.0	7.7	0.0	0	0	0.0				
BH01	16/07/19 14:21:30			0.2	0.0	7.7	0.0	0	0	0.0				
BH01	16/07/19 14:21:45			0.2	0.0	7.7	0.0	0	0	0.0				
BH01	16/07/19 14:22:00			0.2	0.0	7.7	0.0	0	0	0.0				
BH01	16/07/19 14:23:00										0.0			
BH01	16/07/19 14:24:00										0.0			
BH01	16/07/19 14:25:00										0.0			
BH01	16/07/19 14:26:00	1015	0									23	1.39	
BH01	01/08/19 12:00:15			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	01/08/19 12:00:30			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	01/08/19 12:00:45			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	01/08/19 12:01:00			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	01/08/19 12:01:15			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	01/08/19 12:01:30			0.1	0.0	21.0	0.0	0	0	0.0				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

CHECKED CT

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH01	01/08/19 12:01:45			0.1	0.0	21.1	0.0	0	0	0.0				
BH01	01/08/19 12:02:00			0.1	0.0	21.1	0.0	0	0	0.0				
BH01	01/08/19 12:03:00										0.0			
BH01	01/08/19 12:04:00										0.0			
BH01	01/08/19 12:05:00										0.0			
BH01	01/08/19 12:06:00	1021	0									22	1.12	
BH01	14/08/19 15:10:15			0.7	0.0	17.7	0.0	0	0	0.6				
BH01	14/08/19 15:10:30			0.1	0.0	19.4	0.0	0	0	0.6				
BH01	14/08/19 15:10:45			0.1	0.0	19.6	0.0	0	0	0.5				
BH01	14/08/19 15:11:00			0.0	0.0	19.8	0.0	0	0	0.5				
BH01	14/08/19 15:11:15			0.0	0.0	20.0	0.0	0	0	0.5				
BH01	14/08/19 15:11:30			0.0	0.0	20.0	0.0	0	0	0.5				
BH01	14/08/19 15:11:45			0.0	0.0	20.0	0.0	0	0	0.5				
BH01	14/08/19 15:12:00			0.0	0.0	20.0	0.0	0	0	0.5				
BH01	14/08/19 15:13:00										0.0			
BH01	14/08/19 15:14:00										0.0			
BH01	14/08/19 15:15:00										0.0			
BH01	14/08/19 15:16:00	1007	0									18	0.83	
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH01	23/08/19 14:05:15			0.0	0.0	21.1	0.0	0	0	0.0				
BH01	23/08/19 14:05:30			0.0	0.0	21.1	0.0	0	0	0.0				
BH01	23/08/19 14:05:45			0.0	0.0	21.2	0.0	0	0	0.0				
BH01	23/08/19 14:06:00			0.0	0.0	21.2	0.0	0	0	0.0				
BH01	23/08/19 14:06:15			0.0	0.0	21.2	0.0	0	0	0.0				
BH01	23/08/19 14:06:30			0.0	0.0	21.3	0.0	0	0	0.0				
BH01	23/08/19 14:06:45			0.0	0.0	21.3	0.0	0	0	0.0				
BH01	23/08/19 14:07:00			0.0	0.0	21.4	0.0	0	0	0.0				
BH01	23/08/19 14:08:00										0.0			
BH01	23/08/19 14:09:00										0.0			
BH01	23/08/19 14:10:00										0.0			
BH01	23/08/19 14:11:00	1024	0									23	0.99	
BH01	11/09/19 13:05:15			0.0	0.0	20.6	0.0	0	0	1.2				
BH01	11/09/19 13:05:30			0.0	0.0	20.6	0.0	0	0	1.1				
BH01	11/09/19 13:05:45			0.0	0.0	20.6	0.0	0	0	1.0				
BH01	11/09/19 13:06:00			0.0	0.0	20.6	0.0	0	0	1.0				
BH01	11/09/19 13:06:15			0.0	0.0	20.6	0.0	0	0	0.9				
BH01	11/09/19 13:06:30			0.0	0.0	20.6	0.0	0	0	0.8				
remarks													T CONTRACT	CHECKER

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH01	11/09/19 13:06:45			0.0	0.0	20.6	0.0	0	0	0.8				
BH01	11/09/19 13:07:00			0.0	0.0	20.6	0.0	0	0	0.8				
BH01	11/09/19 13:08:00										0.0			
BH01	11/09/19 13:09:00										0.0			
BH01	11/09/19 13:10:00										0.0			
BH01	11/09/19 13:11:00	1019	0									19	0.95	
BH01	24/09/19 13:10:15			0.1	0.0	21.0	0.0	0	0	0.0				
BH01	24/09/19 13:10:30			0.1	0.0	21.0	0.0	0	0	0.0				
BH01	24/09/19 13:10:45			0.1	0.0	21.0	0.0	0	0	0.0				
BH01	24/09/19 13:11:00			0.0	0.0	21.1	0.0	0	0	0.0				
BH01	24/09/19 13:11:15			0.0	0.0	21.1	0.0	0	0	0.0				
BH01	24/09/19 13:11:30			0.0	0.0	21.1	0.0	0	0	0.0				
BH01	24/09/19 13:11:45			0.0	0.0	21.1	0.0	0	0	0.0				
BH01	24/09/19 13:12:00			0.0	0.0	21.1	0.0	0	0	0.0				
BH01	24/09/19 13:13:00										0.0			
BH01	24/09/19 13:14:00										0.0			
BH01	24/09/19 13:15:00										0.0			
BH01	24/09/19 13:16:00	1002	0									18	0.92	
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH01	16/07/19 14:15:15			0.0	0.0	20.2	0.0	0	0	0.0				
BH01	16/07/19 14:15:30			0.0	0.0	20.4	0.0	0	0	0.0				
BH01	16/07/19 14:15:45			0.0	0.0	20.4	0.0	0	0	0.0				
BH01	16/07/19 14:16:00			0.0	0.0	20.4	0.0	0	0	0.0				
BH01	16/07/19 14:16:15			0.0	0.0	20.4	0.0	0	0	0.0				
BH01	16/07/19 14:16:30			0.0	0.0	20.4	0.0	0	0	0.0				
BH01	16/07/19 14:16:45			0.0	0.0	20.4	0.0	0	0	0.0				
BH01	16/07/19 14:17:00			0.0	0.0	20.4	0.0	0	0	0.0				
BH01	16/07/19 14:18:00										0.0			
BH01	16/07/19 14:19:00										0.0			
BH01	16/07/19 14:20:00										0.0			
BH01	16/07/19 14:21:00	1015	0									23	1.43	
BH01	01/08/19 11:26:15			0.0	0.1	20.8	0.0	0	0	0.0				
BH01	01/08/19 11:26:30			0.0	0.1	20.9	0.0	0	0	0.0				
BH01	01/08/19 11:26:45			0.0	0.1	20.9	0.0	0	0	0.0				
BH01	01/08/19 11:27:00			0.0	0.1	20.9	0.0	0	0	0.0				
BH01	01/08/19 11:27:15			0.0	0.1	20.9	0.0	0	0	0.0				
BH01	01/08/19 11:27:30			0.0	0.1	20.9	0.0	0	0	0.0				
remarks													CONTRACT	TCHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH01	01/08/19 11:27:45			0.0	0.1	20.9	0.0	0	0	0.0				
BH01	01/08/19 11:28:00			0.0	0.1	20.9	0.0	0	0	0.0				
BH01	01/08/19 11:29:00										-0.6			
BH01	01/08/19 11:30:00										0.0			
BH01	01/08/19 11:31:00										0.0			
BH01	01/08/19 11:32:00	1021	0									22	1.14	
BH01	14/08/19 15:00:15			0.0	0.0	20.3	0.0	0	0	0.4				
BH01	14/08/19 15:00:30			0.0	0.0	20.3	0.0	0	0	0.5				
BH01	14/08/19 15:00:45			0.0	0.0	20.3	0.0	0	0	0.4				
BH01	14/08/19 15:01:00			0.0	0.0	20.3	0.0	0	0	0.4				
BH01	14/08/19 15:01:15			0.0	0.0	20.3	0.0	0	0	0.4				
BH01	14/08/19 15:01:30			0.0	0.0	20.3	0.0	0	0	0.4				
BH01	14/08/19 15:01:45			0.0	0.0	20.3	0.0	0	0	0.4				
BH01	14/08/19 15:02:00			0.0	0.0	20.3	0.0	0	0	0.4				
BH01	14/08/19 15:03:00										0.0			
BH01	14/08/19 15:04:00										0.0			
BH01	14/08/19 15:05:00										0.0			
BH01	14/08/19 15:06:00	1008	0									18	0.93	
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH01	23/08/19 13:56:15			0.0	0.0	21.3	0.0	0	0	0.0				
BH01	23/08/19 13:56:30			0.0	0.0	21.3	0.0	0	0	0.0				
BH01	23/08/19 13:56:45			0.0	0.0	21.3	0.0	0	0	0.0				
BH01	23/08/19 13:57:00			0.0	0.0	21.3	0.0	0	0	0.0				
BH01	23/08/19 13:57:15			0.0	0.0	21.4	0.0	0	0	0.0				
BH01	23/08/19 13:57:30			0.0	0.0	21.4	0.0	0	0	0.0				
BH01	23/08/19 13:57:45			0.0	0.0	21.4	0.0	0	0	0.0				
BH01	23/08/19 13:58:00			0.0	0.0	21.4	0.0	0	0	0.0				
BH01	23/08/19 13:59:00										0.0			
BH01	23/08/19 14:00:00										0.0			
BH01	23/08/19 14:01:00										0.0			
BH01	23/08/19 14:02:00	1024	0									23	0.95	
BH01	27/08/19 00:00:00													
BH01	11/09/19 12:56:15			0.3	0.0	20.4	0.0	0	0	1.8				
BH01	11/09/19 12:56:30			0.3	0.0	20.4	0.0	0	0	1.7				
BH01	11/09/19 12:56:45			0.3	0.0	20.4	0.0	0	0	1.5				
BH01	11/09/19 12:57:00			0.3	0.0	20.3	0.0	0	0	1.3				
BH01	11/09/19 12:57:15			0.3	0.0	20.3	0.0	0	0	1.1				
remarks													CONTRACT	CHECKER

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH01	11/09/19 12:57:30			0.3	0.0	20.2	0.0	0	0	1.0				
BH01	11/09/19 12:57:45			0.3	0.0	20.2	0.0	0	0	0.9				
BH01	11/09/19 12:58:00			0.3	0.0	20.2	0.0	0	0	0.8				
BH01	11/09/19 12:59:00										0.0			
BH01	11/09/19 13:00:00										0.0			
BH01	11/09/19 13:01:00										0.0			
BH01	11/09/19 13:02:00	1019	0									19	0.97	
BH01	12/09/19 00:00:00													
BH01	24/09/19 13:00:15			0.1	0.0	21.0	0.0	0	0	0.1				
BH01	24/09/19 13:00:30			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	24/09/19 13:00:45			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	24/09/19 13:01:00			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	24/09/19 13:01:15			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	24/09/19 13:01:30			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	24/09/19 13:01:45			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	24/09/19 13:02:00			0.1	0.0	20.9	0.0	0	0	0.0				
BH01	24/09/19 13:03:00										0.0			
BH01	24/09/19 13:04:00										0.0			
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water re level (m - bgl)	emarks
BH01	24/09/19 13:05:00										0.0			
BH01	24/09/19 13:06:00	1002	0									18	0.96	
emarks	eding capacity of gas mo												CONTRACT	CHECK

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

CT

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH02	16/07/19 12:34:00	1021	0									23	1.24	Gas cap replaced with gas valve.
BH02	31/07/19 12:00:15			0.1	0.0	21.0	0.0	0	0	0.1				
BH02	31/07/19 12:00:30			0.1	0.0	21.0	0.0	0	0	0.1				
BH02	31/07/19 12:00:45			0.1	0.0	21.1	0.0	0	0	0.1				
BH02	31/07/19 12:01:00			0.0	0.0	21.1	0.0	0	0	0.1				
BH02	31/07/19 12:01:15			0.0	0.0	21.1	0.0	0	0	0.1				
BH02	31/07/19 12:01:30			0.0	0.0	21.1	0.0	0	0	0.1				
BH02	31/07/19 12:01:45			0.0	0.0	21.1	0.0	0	0	0.0				
BH02	31/07/19 12:02:00			0.0	0.0	21.1	0.0	0	0	0.0				
BH02	31/07/19 12:03:00										0.0			
BH02	31/07/19 12:04:00										0.0			
BH02	31/07/19 12:05:00										0.0			
BH02	31/07/19 12:06:00	1014	0									21	0.88	
BH02	14/08/19 14:45:15			0.0	0.0	20.6	0.0	0	0	0.0				
BH02	14/08/19 14:45:30			0.0	0.0	20.5	0.0	0	0	0.0				
BH02	14/08/19 14:45:45			0.0	0.0	20.5	0.0	0	0	0.0				
BH02	14/08/19 14:46:00			0.0	0.0	20.4	0.0	0	0	0.0				
BH02	14/08/19 14:46:15			0.0	0.0	20.3	0.0	0	0	0.0				

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH02	14/08/19 14:46:30			0.0	0.0	20.3	0.0	0	0	0.0				
BH02	14/08/19 14:46:45			0.0	0.0	20.3	0.0	0	0	0.0				
BH02	14/08/19 14:47:00			0.0	0.0	20.3	0.0	0	0	0.0				
BH02	14/08/19 14:48:00										0.0			
BH02	14/08/19 14:49:00										0.0			
BH02	14/08/19 14:50:00										0.0			
BH02	14/08/19 14:51:00	1008	0									18	0.65	
BH02	23/08/19 13:40:15			0.0	0.0	21.8	0.0	0	0	0.0				
BH02	23/08/19 13:40:30			0.0	0.0	21.6	0.0	0	0	0.0				
BH02	23/08/19 13:40:45			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:41:00			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:41:15			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:41:30			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:41:45			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:42:00										0.0			
BH02	23/08/19 13:43:00										0.0			
BH02	23/08/19 13:44:00										0.0			
BH02	23/08/19 13:45:00	1024	0									20	0.53	
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH02	10/09/19 13:55:15			0.0	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:55:30			0.0	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:55:45			0.0	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:56:00			0.0	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:56:15			0.0	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:56:30			0.0	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:56:45			0.0	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:57:00										0.0			
BH02	10/09/19 13:58:00										0.0			
BH02	10/09/19 13:59:00										0.0			
BH02	10/09/19 14:00:00	1019	0									18	0.66	
BH02	24/09/19 12:45:15			0.3	0.0	20.6	0.0	0	0	0.0				
BH02	24/09/19 12:45:30			0.2	0.0	20.8	0.0	0	0	0.0				
BH02	24/09/19 12:45:45			0.1	0.0	20.8	0.0	0	0	0.0				
BH02	24/09/19 12:46:00			0.1	0.0	20.9	0.0	0	0	0.0				
BH02	24/09/19 12:46:15			0.1	0.0	20.9	0.0	0	0	0.0				
BH02	24/09/19 12:46:30			0.1	0.0	20.9	0.0	0	0	0.0				
BH02	24/09/19 12:46:45			0.1	0.0	20.9	0.0	0	0	0.0				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH02	24/09/19 12:47:00			0.1	0.0	20.9	0.0	0	0	0.0				
BH02	24/09/19 12:48:00										0.0			
BH02	24/09/19 12:49:00										0.0			
BH02	24/09/19 12:50:00										0.0			
BH02	24/09/19 12:51:00	1001	0									18	0.65	
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH02	16/07/19 12:31:15			0.1	0.0	20.3	0.0	0	0	6.0				
BH02	16/07/19 12:31:30			0.0	0.0	20.4	0.0	0	0	5.2				
BH02	16/07/19 12:31:45			0.0	0.0	20.3	0.0	0	0	4.0				
BH02	16/07/19 12:32:00			0.0	0.0	20.3	0.0	0	0	3.4				
BH02	16/07/19 12:32:15			0.0	0.0	20.3	0.0	0	0	3.0				
BH02	16/07/19 12:32:30			0.0	0.0	20.3	0.0	0	0	2.6				
BH02	16/07/19 12:32:45			0.0	0.0	20.3	0.0	0	0	2.4				
BH02	16/07/19 12:33:00			0.0	0.0	20.3	0.0	0	0	2.2				
BH02	16/07/19 12:34:00										0.0			
BH02	16/07/19 12:35:00										0.0			
BH02	16/07/19 12:36:00										0.0			
BH02	16/07/19 12:37:00										0.0			
BH02	16/07/19 12:38:00	1021	0									23	1.09	
BH02	31/07/19 14:10:15			0.0	0.0	21.4	0.0	0	0	47.6				
BH02	31/07/19 14:10:30			0.0	0.0	21.4	0.0	0	0	40.1				
BH02	31/07/19 14:10:45			0.0	0.0	21.2	0.0	0	0	29.1				
BH02	31/07/19 14:11:00			0.0	0.0	21.2	0.0	0	0	18.6				
BH02	31/07/19 14:11:15			0.0	0.0	21.2	0.0	0	0	15.6				
remarks													CONTRACT	CHECKER

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH02	31/07/19 14:11:30			0.0	0.0	21.2	0.0	0	0	13.8				
BH02	31/07/19 14:11:45			0.0	0.0	21.2	0.0	0	0	11.8				
BH02	31/07/19 14:12:00			0.0	0.0	21.2	0.0	0	0	11.2				
BH02	31/07/19 14:13:00										0.0			
BH02	31/07/19 14:14:00										0.0			
BH02	31/07/19 14:15:00										0.0			
BH02	31/07/19 14:16:00	1014	0									21	0.80	
BH02	14/08/19 14:37:15			0.1	0.0	19.7	0.0	0	0	1.6				
BH02	14/08/19 14:37:30			0.0	0.0	20.3	0.0	0	0	1.3				
BH02	14/08/19 14:37:45			0.0	0.0	20.4	0.0	0	0	1.3				
BH02	14/08/19 14:38:00			0.0	0.0	20.4	0.0	0	0	1.2				
BH02	14/08/19 14:38:15			0.0	0.0	20.4	0.0	0	0	1.1				
BH02	14/08/19 14:38:30			0.0	0.0	20.4	0.0	0	0	1.0				
BH02	14/08/19 14:38:45			0.0	0.0	20.4	0.0	0	0	0.9				
BH02	14/08/19 14:39:00			0.0	0.0	20.4	0.0	0	0	0.8				
BH02	14/08/19 14:40:00										0.0			
BH02	14/08/19 14:41:00										0.0			
BH02	14/08/19 14:42:00										0.0			
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH02	14/08/19 14:43:00	1008	0									18	0.55	
BH02	23/08/19 13:32:15			0.0	0.0	21.6	0.0	0	0	0.0				
BH02	23/08/19 13:32:30			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:32:45			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:33:00			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:33:15			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:33:30			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:33:45			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:34:00			0.0	0.0	21.5	0.0	0	0	0.0				
BH02	23/08/19 13:35:00										0.0			
BH02	23/08/19 13:36:00										0.0			
BH02	23/08/19 13:37:00										0.0			
BH02	23/08/19 13:38:00	1024	0									20	0.53	
BH02	27/08/19 00:00:00													
BH02	10/09/19 13:48:15			0.1	0.0	20.7	0.0	0	0	0.1				
BH02	10/09/19 13:48:30			0.1	0.0	20.7	0.0	0	0	0.1				
BH02	10/09/19 13:48:45			0.1	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:49:00			0.1	0.0	20.7	0.0	0	0	0.0				
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH02	10/09/19 13:49:15			0.1	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:49:30			0.1	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:49:45			0.0	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:50:00			0.0	0.0	20.7	0.0	0	0	0.0				
BH02	10/09/19 13:51:00										-0.7			
BH02	10/09/19 13:52:00										-0.8			
BH02	10/09/19 13:53:00										-0.6			
BH02	10/09/19 13:54:00	1019	-4									18	0.64	
BH02	12/09/19 00:00:00													
BH02	24/09/19 12:36:15			0.2	0.0	20.9	0.0	0	0	0.6				
BH02	24/09/19 12:36:30			0.2	0.0	20.9	0.0	0	0	0.4				
BH02	24/09/19 12:36:45			0.2	0.0	20.9	0.0	0	0	0.3				
BH02	24/09/19 12:37:00			0.1	0.0	20.9	0.0	0	0	0.2				
BH02	24/09/19 12:37:15			0.1	0.0	20.9	0.0	0	0	0.2				
BH02	24/09/19 12:37:30			0.1	0.0	20.9	0.0	0	0	0.1				
BH02	24/09/19 12:37:45			0.1	0.0	21.0	0.0	0	0	0.0				
BH02	24/09/19 12:38:00			0.1	0.0	21.0	0.0	0	0	0.0				
BH02	24/09/19 12:39:00										0.0			
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	re	marks
BH02	24/09/19 12:40:00										0.0				
BH02	24/09/19 12:41:00										0.0				
BH02	24/09/19 12:42:00	1001	0									18	0.61		
emarks														ITDACT	

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH03	16/07/19 14:50:15			3.9	0.0	4.5	0.0	0	0	52.8				
BH03	16/07/19 14:50:30			4.0	0.0	1.6	0.0	0	0	60.4				
BH03	16/07/19 14:50:45			4.0	0.0	1.4	0.0	0	0	62.2				
BH03	16/07/19 14:51:00			4.0	0.0	1.1	0.0	0	0	62.4				
BH03	16/07/19 14:51:15			4.0	0.0	1.0	0.0	0	0	62.1				
BH03	16/07/19 14:51:30			4.0	0.0	0.9	0.0	0	0	62.5				
BH03	16/07/19 14:51:45			4.0	0.0	0.9	0.0	0	0	62.7				
BH03	16/07/19 14:52:00			4.0	0.0	0.9	0.0	0	0	63.1				
BH03	16/07/19 14:53:00										0.0			
BH03	16/07/19 14:54:00										0.0			
BH03	16/07/19 14:55:00										0.0			
BH03	16/07/19 14:56:00	1016	0									24	1.39	
BH03	01/08/19 12:00:15			4.5	0.0	1.2	0.0	0	0	62.7				
BH03	01/08/19 12:00:30			4.6	0.0	1.3	0.0	0	0	62.5				
BH03	01/08/19 12:00:45			4.7	0.0	1.5	0.0	0	0	62.3				
BH03	01/08/19 12:01:00			4.7	0.0	1.6	0.0	0	0	61.8				
BH03	01/08/19 12:01:15			4.7	0.0	1.4	0.0	0	0	61.1				
BH03	01/08/19 12:01:30			4.7	0.0	1.3	0.0	0	0	60.5				
remarks													CONTRACT	CHECKER

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water re level (m - bgl)	emarks
BH03	01/08/19 12:01:45			4.7	0.0	1.2	0.0	0	0	53.7				
BH03	01/08/19 12:02:00			4.7	0.0	1.2	0.0	0	0	51.4				
BH03	01/08/19 12:03:00										0.0			
BH03	01/08/19 12:04:00										0.0			
BH03	01/08/19 12:05:00										0.0			
BH03	01/08/19 12:06:00	1021	0									22	1.45	
BH03	14/08/19 15:45:15			5.5	0.0	0.8	0.0	0	0	0.8				
BH03	14/08/19 15:45:30			5.6	0.0	0.5	0.0	0	0	0.8				
BH03	14/08/19 15:45:45			5.6	0.0	0.2	0.0	0	0	0.9				
BH03	14/08/19 15:46:00			5.6	0.0	0.1	0.0	0	0	0.9				
BH03	14/08/19 15:46:15			5.6	0.0	0.1	0.0	0	0	0.9				
BH03	14/08/19 15:46:30			5.6	0.0	0.0	0.0	0	0	0.9				
BH03	14/08/19 15:46:45			5.6	0.0	0.0	0.0	0	0	0.9				
BH03	14/08/19 15:47:00			5.6	0.0	0.0	0.0	0	0	0.9				
BH03	14/08/19 15:48:00										16.2			
BH03	14/08/19 15:49:00										15.7			
BH03	14/08/19 15:50:00										15.4			
BH03	14/08/19 15:51:00	1008	135									18	1.14	
remarks	eding canacity of gas mo												CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH03	23/08/19 14:58:15			4.1	0.0	3.8	0.0	0	0	0.0				
BH03	23/08/19 14:58:30			3.9	0.0	5.6	0.0	0	0	0.0				
BH03	23/08/19 14:58:45			3.8	0.0	6.2	0.0	0	0	0.0				
BH03	23/08/19 14:59:00			3.6	0.0	7.0	0.0	0	0	0.0				
BH03	23/08/19 14:59:15			3.4	0.0	7.5	0.0	0	0	0.0				
BH03	23/08/19 14:59:30			3.3	0.0	7.9	0.0	0	0	0.0				
BH03	23/08/19 14:59:45			3.2	0.0	8.4	0.0	0	0	0.0				
BH03	23/08/19 15:00:00			3.1	0.0	8.6	0.0	0	0	0.0				
BH03	23/08/19 15:01:00										0.0			
BH03	23/08/19 15:02:00										0.0			
BH03	23/08/19 15:03:00										0.0			
BH03	23/08/19 15:04:00	1024	0									23	0.11	
BH03	11/09/19 14:10:15			4.5	0.0	6.0	0.0	0	0	0.0				
ВН03	11/09/19 14:10:30			2.4	0.0	5.9	0.0	0	0	0.0				
BH03	11/09/19 14:10:45			1.7	0.0	5.6	0.0	0	0	0.0				
BH03	11/09/19 14:11:00			0.3	0.0	5.5	0.0	0	0	0.0				
BH03	11/09/19 14:11:15			0.1	0.0	5.5	0.0	0	0	0.0				
BH03	11/09/19 14:11:30			0.0	0.0	5.5	0.0	0	0	0.0				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water re level (m - bgl)	emarks
BH03	11/09/19 14:11:45			0.0	0.0	5.5	0.0	0	0	0.0				
BH03	11/09/19 14:12:00			0.0	0.0	5.5	0.0	0	0	0.0				
BH03	11/09/19 14:13:00										0.0			
BH03	11/09/19 14:14:00										0.0			
BH03	11/09/19 14:15:00										0.0			
BH03	11/09/19 14:16:00	1018	0									19	1.01	
BH03	24/09/19 13:30:15			0.5	0.0	21.2	0.0	0	0	0.0				
BH03	24/09/19 13:30:30			2.9	0.0	12.4	0.0	0	0	0.0				
BH03	24/09/19 13:30:45			4.5	0.0	5.5	0.0	0	0	0.0				
BH03	24/09/19 13:31:00			4.5	0.0	5.5	0.0	0	0	0.0				
BH03	24/09/19 13:31:15			4.4	0.0	5.8	0.0	0	0	0.0				
BH03	24/09/19 13:31:30			4.4	0.0	6.1	0.0	0	0	0.0				
BH03	24/09/19 13:31:45			4.4	0.0	6.3	0.0	0	0	0.0				
BH03	24/09/19 13:32:00			4.3	0.0	6.4	0.0	0	0	0.0				
BH03	24/09/19 13:33:00										-1.7			
BH03	24/09/19 13:34:00										-1.3			
BH03	24/09/19 13:35:00										0.0			
BH03	24/09/19 13:36:00	1001	0									18	1.11	
remarks	eding capacity of gas mo												CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

CT

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	re	marks
BH03	16/07/19 14:45:15			0.0	2.4	19.3	22.1	0	0	12.4					
BH03	16/07/19 14:45:30			0.0	0.0	19.9	0.0	0	0	12.1					
BH03	16/07/19 14:45:45			0.0	0.0	19.9	0.0	0	0	11.8					
ВН03	16/07/19 14:46:00			0.1	0.0	20.0	0.0	0	0	11.3					
BH03	16/07/19 14:46:15			0.1	0.0	20.0	0.0	0	0	10.9					
BH03	16/07/19 14:46:30			0.1	0.0	20.0	0.0	0	0					No PID reco	orded
BH03	16/07/19 14:46:45			0.1	0.0	20.0	0.0	0	0					No PID reco	rded
BH03	16/07/19 14:47:00			0.1	0.0	20.0	0.0	0	0	10.2					
BH03	16/07/19 14:48:00										0.0				
BH03	16/07/19 14:49:00										0.0				
BH03	16/07/19 14:50:00										0.0				
BH03	16/07/19 14:51:00	1018	0									24	1.72		
BH03	01/08/19 12:10:15			0.2	0.0	21.1	0.0	0	0	11.4					
BH03	01/08/19 12:10:30			0.2	0.0	21.1	0.0	0	0	11.1					
BH03	01/08/19 12:10:45			0.2	0.0	21.1	0.0	0	0	11.0					
BH03	01/08/19 12:11:00			0.2	0.0	21.1	0.0	0	0	10.8					
BH03	01/08/19 12:11:15			0.2	0.0	21.1	0.0	0	0	10.7					
BH03	01/08/19 12:11:30			0.2	0.0	21.1	0.0	0	0	10.3					
remarks													1	NTDACT	CHECK

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH03	01/08/19 12:11:45			0.2	0.0	21.1	0.0	0	0	10.2				
вноз	01/08/19 12:12:00			0.2	0.0	21.1	0.0	0	0	10.0				
вноз	01/08/19 12:13:00										0.0			
вноз	01/08/19 12:14:00										0.0			
вноз	01/08/19 12:15:00										0.0			
вноз	01/08/19 12:16:00	1021	0									22	1.60	
вноз	14/08/19 15:36:15			0.0	0.0	19.2	0.0	0	0	1.6				
вноз	14/08/19 15:36:30			0.0	0.0	19.6	0.0	0	0	1.4				
вноз	14/08/19 15:36:45			0.0	0.0	19.8	0.0	0	0	1.2				
вноз	14/08/19 15:37:00			0.0	0.0	20.0	0.0	0	0	1.1				
вноз	14/08/19 15:37:15			0.0	0.0	20.0	0.0	0	0	1.0				
вноз	14/08/19 15:37:30			0.0	0.0	20.0	0.0	0	0	0.9				
BH03	14/08/19 15:37:45			0.0	0.0	20.0	0.0	0	0	0.9				
BH03	14/08/19 15:38:00			0.0	0.0	20.0	0.0	0	0	0.9				
BH03	14/08/19 15:39:00										0.0			
BH03	14/08/19 15:40:00										0.0			
BH03	14/08/19 15:41:00										0.0			
BH03	14/08/19 15:42:00	1008	0									18	1.37	
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH03	23/08/19 14:49:15			0.2	0.0	21.0	0.0	0	0	1.1				
BH03	23/08/19 14:49:30			0.1	0.0	21.1	0.0	0	0	0.9				
BH03	23/08/19 14:49:45			0.1	0.0	21.2	0.0	0	0	0.7				
BH03	23/08/19 14:50:00			0.1	0.0	21.3	0.0	0	0	0.5				
BH03	23/08/19 14:50:15			0.1	0.0	21.4	0.0	0	0	0.5				
BH03	23/08/19 14:50:30			0.1	0.0	21.4	0.0	0	0	0.4				
BH03	23/08/19 14:50:45			0.1	0.0	21.5	0.0	0	0	0.1				
BH03	23/08/19 14:51:00			0.1	0.0	21.5	0.0	0	0	0.0				
BH03	23/08/19 14:52:00										0.0			
BH03	23/08/19 14:53:00										0.0			
BH03	23/08/19 14:54:00										0.0			
BH03	23/08/19 14:55:00	1023	0									23	1.27	
BH03	27/08/19 00:00:00													
BH03	11/09/19 14:01:15			0.6	0.0	19.1	0.0	0	0	1.2				
BH03	11/09/19 14:01:30			0.6	0.0	19.4	0.0	0	0	0.1				
BH03	11/09/19 14:01:45			0.6	0.0	19.4	0.0	0	0	0.0				
BH03	11/09/19 14:02:00			0.6	0.0	19.5	0.0	0	0	0.0				
BH03	11/09/19 14:02:15			0.6	0.0	19.5	0.0	0	0	0.0				
remarks													CONTRACT	TOHEONE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH03	11/09/19 14:02:30			0.6	0.0	19.6	0.0	0	0	0.0				
BH03	11/09/19 14:02:45			0.6	0.0	19.6	0.0	0	0	0.0				
BH03	11/09/19 14:03:00			0.6	0.0	19.6	0.0	0	0	0.0				
BH03	11/09/19 14:04:00										0.0			
BH03	11/09/19 14:05:00										0.0			
BH03	11/09/19 14:06:00										0.0			
BH03	11/09/19 14:07:00	1018	0									19	1.50	
BH03	12/09/19 00:00:00													
BH03	24/09/19 13:40:15			0.0	0.0	21.2	0.0	0	0	0.0				
BH03	24/09/19 13:40:30			0.0	0.0	21.0	0.0	0	0	0.0				
BH03	24/09/19 13:40:45			0.0	0.0	21.0	0.0	0	0	0.0				
BH03	24/09/19 13:41:00			0.0	0.0	21.0	0.0	0	0	0.0				
BH03	24/09/19 13:41:15			0.0	0.0	21.0	0.0	0	0	0.0				
BH03	24/09/19 13:41:30			0.0	0.0	21.0	0.0	0	0	0.0				
BH03	24/09/19 13:41:45			0.0	0.0	21.0	0.0	0	0	0.0				
BH03	24/09/19 13:42:00			0.0	0.0	21.0	0.0	0	0	0.0				
BH03	24/09/19 13:43:00										0.0			
BH03	24/09/19 13:44:00										0.0			
remarks													CONTRACT	L CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	re	marks
BH03	24/09/19 13:45:00										0.0				
BH03	24/09/19 13:46:00	1002	0									18	1.50		
emarks													1	ITDACT	Tausai

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH04	17/07/19 17:00:15			2.9	0.0	18.5	0.0	0	0	0.4				
BH04	17/07/19 17:00:30			3.0	0.0	17.0	0.0	0	0	0.6				
BH04	17/07/19 17:00:45			3.0	0.0	16.8	0.0	0	0	2.7				
BH04	17/07/19 17:01:00			3.0	0.0	16.4	0.0	0	0	4.3				
BH04	17/07/19 17:01:15			3.0	0.0	16.3	0.0	0	0	4.4				
BH04	17/07/19 17:01:30			3.0	0.0	16.2	0.0	0	0	4.4				
BH04	17/07/19 17:01:45			3.0	0.0	16.2	0.0	0	0	4.3				
BH04	17/07/19 17:02:00			3.0	0.0	16.2	0.0	0	0	4.3				
BH04	17/07/19 17:03:00										0.0			
BH04	17/07/19 17:04:00										0.0			
BH04	17/07/19 17:05:00										0.0			
BH04	17/07/19 17:06:00	1011	0									22	1.25	
BH04	31/07/19 12:00:15			4.3	0.0	13.4	0.0	0	0	0.5				
BH04	31/07/19 12:00:30			4.9	0.0	12.1	0.0	0	0	0.5				
BH04	31/07/19 12:00:45			4.9	0.0	12.9	0.0	0	0	0.6				
BH04	31/07/19 12:01:00			4.9	0.0	12.5	0.0	0	0	0.7				
BH04	31/07/19 12:01:15			4.9	0.0	12.1	0.0	0	0	0.9				
BH04	31/07/19 12:01:30			5.1	0.0	12.0	0.0	0	0	0.9				
remarks													CONTRACT	r CHECKER

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH04	31/07/19 12:01:45			5.1	0.0	12.1	0.0	0	0	1.0				
BH04	31/07/19 12:02:00			5.1	0.0	12.1	0.0	0	0	1.1				
BH04	31/07/19 12:03:00										0.0			
BH04	31/07/19 12:04:00										0.0			
BH04	31/07/19 12:05:00	1013	0								0.0	21	1.22	
BH04	14/08/19 13:15:15			0.0	0.0	20.6	0.0	0	0	0.3				
BH04	14/08/19 13:15:30			0.0	0.0	20.6	0.0	0	0	0.3				
BH04	14/08/19 13:15:45			0.0	0.0	20.5	0.0	0	0	0.3				
BH04	14/08/19 13:16:00			0.0	0.0	20.4	0.0	0	0	0.3				
BH04	14/08/19 13:16:15			0.0	0.0	20.4	0.0	0	0	0.3				
BH04	14/08/19 13:16:30			0.0	0.0	20.4	0.0	0	0	0.3				
BH04	14/08/19 13:16:45			0.0	0.0	20.4	0.0	0	0	0.3				
BH04	14/08/19 13:17:00			0.0	0.0	20.4	0.0	0	0	0.3				
BH04	14/08/19 13:18:00										0.0			
BH04	14/08/19 13:19:00										0.0			
BH04	14/08/19 13:20:00										0.0			
BH04	14/08/19 13:21:00	1008	0									18	0.78	
BH04	23/08/19 13:13:15			1.5	0.0	19.4	0.0	0	0	0.0				
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH04	23/08/19 13:13:30			1.7	0.0	17.1	0.0	0	0	0.0				
BH04	23/08/19 13:13:45			1.9	0.0	14.3	0.0	0	0	0.0				
BH04	23/08/19 13:14:00			1.4	0.0	16.0	0.0	0	0	0.0				
BH04	23/08/19 13:14:15			0.9	0.0	17.3	0.0	0	0	0.0				
BH04	23/08/19 13:14:30			0.8	0.0	17.9	0.0	0	0	0.0				
BH04	23/08/19 13:14:45			0.7	0.0	18.7	0.0	0	0	0.0				
BH04	23/08/19 13:15:00			0.6	0.0	19.2	0.0	0	0	0.0				
BH04	23/08/19 13:16:00										0.0			
BH04	23/08/19 13:17:00										0.0			
BH04	23/08/19 13:18:00										0.0			
BH04	23/08/19 13:19:00	1025	0									20	0.70	
BH04	10/09/19 14:15:15			4.0	0.0	14.4	0.0	0	0	0.0				
BH04	10/09/19 14:15:30			4.7	0.0	11.9	0.0	0	0	0.0				
BH04	10/09/19 14:15:45			4.7	0.0	11.5	0.0	0	0	0.0				
BH04	10/09/19 14:16:00			4.8	0.0	11.1	0.0	0	0	0.0				
BH04	10/09/19 14:16:15			4.8	0.0	10.8	0.0	0	0	0.0				
BH04	10/09/19 14:16:30			4.8	0.0	10.4	0.0	0	0	0.0				
BH04	10/09/19 14:16:45			4.8	0.0	10.3	0.0	0	0	0.0				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH04	10/09/19 14:17:00			4.8	0.0	10.3	0.0	0	0	0.0				
BH04	10/09/19 14:18:00										0.0			
BH04	10/09/19 14:19:00										0.0			
BH04	10/09/19 14:20:00										0.0			
BH04	10/09/19 14:21:00	1018	0									18	0.86	
BH04	23/09/19 12:50:15			4.4	0.0	11.9	0.0	0	0	0.0				
BH04	23/09/19 12:50:30			4.5		10.5								
BH04	23/09/19 12:50:45			4.6		10.4								
BH04	23/09/19 12:51:00			4.6		10.3								
BH04	23/09/19 12:51:15			4.6		10.3								
BH04	23/09/19 12:51:30					10.3								
BH04	23/09/19 12:51:45					10.4								
BH04	23/09/19 12:52:00					10.4								
BH04	23/09/19 12:53:00										0.0			
BH04	23/09/19 12:54:00										0.0			
BH04	23/09/19 12:55:00										0.0			
BH04	23/09/19 12:56:00	1009	0									16	0.64	
													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH04	17/07/19 16:45:15			0.0	0.0	19.5	0.0	0	0	14.6				
BH04	17/07/19 16:45:30			0.0	0.0	19.7	0.0	0	0	18.7				
BH04	17/07/19 16:45:45			0.0	0.0	19.9	0.0	0	0	21.2				
BH04	17/07/19 16:46:00			0.0	0.0	19.9	0.0	0	0	25.7				
BH04	17/07/19 16:46:15			0.0	0.0	20.0	0.0	0	0	29.0				
BH04	17/07/19 16:46:30			0.0	0.0	20.0	0.0	0	0	32.5				
BH04	17/07/19 16:46:45			0.0	0.0	20.0	0.0	0	0	37.5				
BH04	17/07/19 16:47:00			0.0	0.0	20.0	0.0	0	0	42.3				
BH04	17/07/19 16:48:00										0.0			
BH04	17/07/19 16:49:00										0.0			
BH04	17/07/19 16:50:00										0.0			
BH04	17/07/19 16:51:00	1012	0									22	1.30	
BH04	31/07/19 10:34:15			0.1	0.0	21.1	0.0	0	0	136.7				
BH04	31/07/19 10:34:30			0.1	0.0	21.0	0.0	0	0	138.8				
BH04	31/07/19 10:34:45			0.1	0.0	20.9	0.0	0	0	139.9				
BH04	31/07/19 10:35:00			0.1	0.0	20.9	0.0	0	0	140.4				
BH04	31/07/19 10:35:15			0.1	0.0	20.0	0.0	0	0	133.3				
BH04	31/07/19 10:35:30			0.1	0.0	20.9	0.0	0	0	122.9				
remarks													CONTRACT	CHECKER

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH04	31/07/19 10:35:45			0.1	0.0	20.9	0.0	0	0	119.5				
ВН04	31/07/19 10:36:00			0.1	0.0	20.9	0.0	0	0	117.9				
ВН04	31/07/19 10:37:00										0.0			
ВН04	31/07/19 10:38:00										0.0			
ВН04	31/07/19 10:39:00										0.0			
ВН04	31/07/19 10:40:00	1016	0									19	0.91	
BH04	01/08/19 13:15:00													
BH04	14/08/19 13:07:15			0.0	0.0	20.8	0.0	0	0	0.5				
ВН04	14/08/19 13:07:30			0.0	0.0	20.3	0.0	0	0	0.5				
BH04	14/08/19 13:07:45			0.0	0.0	20.3	0.0	0	0	0.5				
BH04	14/08/19 13:08:00			0.0	0.0	20.3	0.0	0	0	0.4				
BH04	14/08/19 13:08:15			0.0	0.0	20.3	0.0	0	0	0.4				
BH04	14/08/19 13:08:30			0.0	0.0	20.3	0.0	0	0	0.4				
BH04	14/08/19 13:08:45			0.0	0.0	20.3	0.0	0	0	0.3				
BH04	14/08/19 13:09:00			0.0	0.0	20.3	0.0	0	0	0.3				
BH04	14/08/19 13:10:00										0.0			
BH04	14/08/19 13:11:00										0.0			
BH04	14/08/19 13:12:00										0.0			
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH04	14/08/19 13:13:00	1008	0									18	0.80	
BH04	23/08/19 13:01:15			0.0	0.0	21.2	0.0	0	0	0.0				
BH04	23/08/19 13:01:30			0.0	0.0	21.2	0.0	0	0	0.0				
BH04	23/08/19 13:01:45			0.0	0.0	21.2	0.0	0	0	0.0				
BH04	23/08/19 13:02:00			0.0	0.0	21.2	0.0	0	0	0.0				
BH04	23/08/19 13:02:15			0.0	0.0	21.2	0.0	0	0	0.0				
BH04	23/08/19 13:02:30			0.0	0.0	21.2	0.0	0	0	0.0				
BH04	23/08/19 13:02:45			0.0	0.0	21.2	0.0	0	0	0.0				
BH04	23/08/19 13:03:00			0.0	0.0	21.2	0.0	0	0	0.0				
BH04	23/08/19 13:04:00										0.0			
BH04	23/08/19 13:05:00										0.0			
BH04	23/08/19 13:06:00										0.0			
BH04	23/08/19 13:07:00	1025	0									20	0.70	
BH04	27/08/19 00:00:00													
BH04	10/09/19 14:06:15			0.0	0.0	20.7	0.0	0	0	0.2				
BH04	10/09/19 14:06:30			0.0	0.0	20.7	0.0	0	0	0.1				
BH04	10/09/19 14:06:45			0.0	0.0	20.7	0.0	0	0	0.1				
BH04	10/09/19 14:07:00			0.0	0.0	20.7	0.0	0	0	0.1				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH04	10/09/19 14:07:15			0.0	0.0	20.6	0.0	0	0	0.1				
BH04	10/09/19 14:07:30			0.0	0.0	20.6	0.0	0	0	0.1				
BH04	10/09/19 14:07:45			0.0	0.0	20.6	0.0	0	0	0.1				
BH04	10/09/19 14:08:00			0.0	0.0	20.6	0.0	0	0	0.1				
BH04	10/09/19 14:09:00										0.0			
BH04	10/09/19 14:10:00										0.0			
BH04	10/09/19 14:11:00										0.0			
BH04	10/09/19 14:12:00	1018	0									18	0.88	
BH04	12/09/19 00:00:00													
BH04	23/09/19 12:40:15			0.1	0.0	20.8	0.0	0	0	0.0				
BH04	23/09/19 12:40:30			0.1	0.0	20.8	0.0	0	0	0.0				
BH04	23/09/19 12:40:45			0.1	0.0	20.8	0.0	0	0	0.0				
BH04	23/09/19 12:41:00			0.0	0.0	20.9	0.0	0	0	0.0				
BH04	23/09/19 12:41:15			0.0	0.0	20.9	0.0	0	0	0.0				
BH04	23/09/19 12:41:30			0.0	0.0	20.9	0.0	0	0	0.0				
BH04	23/09/19 12:41:45			0.0	0.0	20.9	0.0	0	0	0.0				
BH04	23/09/19 12:42:00			0.0	0.0	20.9	0.0	0	0	0.0				
BH04	23/09/19 12:43:00										0.0			
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH04	23/09/19 12:44:00										0.0			
BH04	23/09/19 12:45:00										0.0			
BH04	23/09/19 12:46:00	1009	0									16	0.87	
remarks													CONTRACT	TCHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH05	18/07/19 11:05:15			0.0	0.0	19.7	0.0	0	0	1.4				
BH05	18/07/19 11:05:30			3.2	0.0	10.4	0.0	0	0	2.5				
BH05	18/07/19 11:05:45			3.3	0.0	8.0	0.0	0	0	3.6				
BH05	18/07/19 11:06:00			5.5	0.0	7.3	0.0	0	0	5.0				
BH05	18/07/19 11:06:15			5.9	0.0	5.9	0.0	0	0	7.1				
BH05	18/07/19 11:06:30			6.1	0.0	5.0	0.0	0	0	8.0				
BH05	18/07/19 11:06:45			6.4	0.0	5.5	0.0	0	0	8.6				
BH05	18/07/19 11:07:00			6.5	0.0	3.3	0.0	0	0	9.0				
BH05	18/07/19 11:08:00									8.5				Only PID recorded
BH05	18/07/19 11:09:00									8.1				Only PID recorded
BH05	18/07/19 11:10:00									7.7				Only PID recorded
BH05	18/07/19 11:11:00										0.0			
BH05	18/07/19 11:12:00										0.0			
BH05	18/07/19 11:13:00										0.0			
BH05	18/07/19 11:14:00	1011	0									18	1.29	
BH05	31/07/19 12:00:15			0.0	0.0	21.3	0.0	0	0	1.1				
BH05	31/07/19 12:00:30			0.0	0.0	21.3	0.0	0	0	0.9				
BH05	31/07/19 12:00:45			0.0	0.0	21.3	0.0	0	0	0.7				
remarks														NTBACT CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH05	31/07/19 12:01:00			0.0	0.0	21.3	0.0	0	0	0.6				
BH05	31/07/19 12:01:15			0.0	0.0	21.3	0.0	0	0	0.5				
BH05	31/07/19 12:01:30			0.0	0.0	21.3	0.0	0	0	0.5				
BH05	31/07/19 12:01:45			0.0	0.0	21.3	0.0	0	0	0.4				
BH05	31/07/19 12:02:00			0.0	0.0	21.3	0.0	0	0	0.3				
BH05	31/07/19 12:03:00										0.0			
BH05	31/07/19 12:04:00										0.0			
BH05	31/07/19 12:05:00										0.0			
BH05	31/07/19 12:06:00	1014	0									21	1.10	
BH05	14/08/19 12:45:15			0.0	0.0	20.7	0.0	0	0	0.9				
BH05	14/08/19 12:45:30			0.0	0.0	20.3	0.0	0	0	0.6				
BH05	14/08/19 12:45:45			0.0	0.0	20.3	0.0	0	0	0.6				
BH05	14/08/19 12:46:00			0.0	0.0	20.3	0.0	0	0	0.6				
BH05	14/08/19 12:46:15			0.0	0.0	20.3	0.0	0	0	0.5				
BH05	14/08/19 12:46:30			0.0	0.0	20.3	0.0	0	0	0.5				
BH05	14/08/19 12:46:45			0.0	0.0	20.3	0.0	0	0	0.4				
BH05	14/08/19 12:47:00			0.0	0.0	20.3	0.0	0	0	0.3				
BH05	14/08/19 12:48:00										0.0			
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH05	14/08/19 12:49:00										0.0			
BH05	14/08/19 12:50:00										0.0			
BH05	14/08/19 12:51:00	1008	0									18	0.40	
BH05	23/08/19 12:40:15			0.2	0.0	21.2	0.0	0	0	0.0				
BH05	23/08/19 12:40:30			0.2	0.0	21.2	0.0	0	0	0.0				
BH05	23/08/19 12:40:45			0.1	0.0	21.3	0.0	0	0	0.0				
BH05	23/08/19 12:41:00			0.1	0.0	21.3	0.0	0	0	0.0				
BH05	23/08/19 12:41:15			0.1	0.0	21.3	0.0	0	0	0.0				
BH05	23/08/19 12:41:30			0.1	0.0	21.3	0.0	0	0	0.0				
BH05	23/08/19 12:41:45			0.1	0.0	21.3	0.0	0	0	0.0				
BH05	23/08/19 12:42:00			0.1	0.0	21.3	0.0	0	0	0.0				
BH05	23/08/19 12:43:00										0.7			
BH05	23/08/19 12:44:00										0.9			
BH05	23/08/19 12:45:00										1.5			
BH05	23/08/19 12:46:00	1023	5									20	0.43	
BH05	10/09/19 13:30:15			0.3	0.0	19.6	0.0	0	0	0.0				
BH05	10/09/19 13:30:30			0.1	0.0	20.4	0.0	0	0	0.0				
BH05	10/09/19 13:30:45			0.1	0.0	20.5	0.0	0	0	0.0				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH05	10/09/19 13:31:00			0.1	0.0	20.6	0.0	0	0	0.0				
BH05	10/09/19 13:31:15			0.0	0.0	20.7	0.0	0	0	0.0				
BH05	10/09/19 13:31:30			0.0	0.0	20.7	0.0	0	0	0.0				
BH05	10/09/19 13:31:45			0.0	0.0	20.7	0.0	0	0	0.0				
BH05	10/09/19 13:32:00			0.0	0.0	20.7	0.0	0	0	0.0				
BH05	10/09/19 13:33:00										0.0			
BH05	10/09/19 13:34:00										0.0			
BH05	10/09/19 13:35:00										0.0			
BH05	10/09/19 13:36:00	1017	0									18	1.06	
BH05	23/09/19 12:10:15			0.0	0.0	20.9	0.0	0	0	0.0				
BH05	23/09/19 12:10:30			0.0	0.0	20.9	0.0	0	0	0.0				
BH05	23/09/19 12:10:45			0.0	0.0	20.9	0.0	0	0	0.0				
BH05	23/09/19 12:11:00			0.0	0.0	20.9	0.0	0	0	0.0				
BH05	23/09/19 12:11:15			0.0	0.0	20.9	0.0	0	0	0.0				
BH05	23/09/19 12:11:30			0.0	0.0	20.9	0.0	0	0	0.0				
BH05	23/09/19 12:11:45			0.0	0.0	20.9	0.0	0	0	0.0				
BH05	23/09/19 12:12:00			0.0	0.0	20.9	0.0	0	0	0.0				
BH05	23/09/19 12:13:00										0.0			
remarks													CONTRACT	TCHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH05	23/09/19 12:14:00										0.0			
BH05	23/09/19 12:15:00										0.0			
BH05	23/09/19 12:16:00	1012	0									17	1.13	

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH05	18/07/19 11:15:15			0.0	0.0	18.6	0.0	0	0	25.1				
BH05	18/07/19 11:15:30			0.0	0.0	19.1	0.0	0	0	34.0				
BH05	18/07/19 11:15:45			0.0	0.0	19.5	0.0	0	0	56.5				
BH05	18/07/19 11:16:00			0.0	0.0	19.6	0.0	0	0	52.7				
BH05	18/07/19 11:16:15			0.0	0.0	19.7	0.0	0	0	51.4				
BH05	18/07/19 11:16:30			0.0	0.0	19.8	0.0	0	0	54.3				
BH05	18/07/19 11:16:45			0.0	0.0	19.9	0.0	0	0	52.4				
BH05	18/07/19 11:17:00			0.0	0.0	19.9	0.0	0	0	51.1				
BH05	18/07/19 11:18:00										0.0			
BH05	18/07/19 11:19:00										0.0			
BH05	18/07/19 11:20:00										0.0			
BH05	18/07/19 11:21:00	1011	0									18	1.40	
BH05	31/07/19 13:42:15			0.0	0.0	20.5	0.0	0	0	3.0				
BH05	31/07/19 13:42:30			0.0	0.0	20.8	0.0	0	0	3.0				
BH05	31/07/19 13:42:45			0.0	0.0	21.0	0.0	0	0	2.8				
BH05	31/07/19 13:43:00			0.0	0.0	21.1	0.0	0	0	3.1				
BH05	31/07/19 13:43:15			0.0	0.0	21.1	0.0	0	0	4.2				
BH05	31/07/19 13:43:30			0.0	0.0	21.1	0.0	0	0	4.2				
remarks													CONTRACT	TOHEONE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH05	31/07/19 13:43:45			0.0	0.0	21.1	0.0	0	0	4.5				
BH05	31/07/19 13:44:00			0.0	0.0	21.1	0.0	0	0	6.2				
BH05	31/07/19 13:45:00										0.0			
BH05	31/07/19 13:46:00										0.0			
BH05	31/07/19 13:47:00	1014	0									21	1.21	
BH05	01/08/19 10:30:00													
BH05	14/08/19 12:33:15			0.0	0.0	20.5	0.0	0	0	1.9				
BH05	14/08/19 12:33:30			0.0	0.0	20.5	0.0	0	0	2.0				
BH05	14/08/19 12:33:45			0.0	0.0	20.4	0.0	0	0	1.9				
BH05	14/08/19 12:34:00			0.0	0.0	20.4	0.0	0	0	1.2				
BH05	14/08/19 12:34:15			0.0	0.0	20.4	0.0	0	0	1.6				
BH05	14/08/19 12:34:30			0.0	0.0	20.4	0.0	0	0	1.6				
BH05	14/08/19 12:34:45			0.0	0.0	20.4	0.0	0	0	1.3				
BH05	14/08/19 12:35:00			0.0	0.0	20.4	0.0	0	0	1.4				
BH05	14/08/19 12:36:00										0.0			
BH05	14/08/19 12:37:00										0.0			
BH05	14/08/19 12:38:00										0.0			
BH05	14/08/19 12:39:00	1009	0									18	1.06	
remarks													T CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH05	23/08/19 12:32:15			0.0	0.0	21.5	0.0	0	0	1.9				
BH05	23/08/19 12:32:30			0.0	0.0	21.5	0.0	0	0	2.1				
BH05	23/08/19 12:32:45			0.0	0.0	21.5	0.0	0	0	2.2				
BH05	23/08/19 12:33:00			0.0	0.0	21.4	0.0	0	0	0.8				
BH05	23/08/19 12:33:15			0.0	0.0	21.4	0.0	0	0	0.8				
BH05	23/08/19 12:33:30			0.0	0.0	21.4	0.0	0	0	0.8				
BH05	23/08/19 12:33:45			0.0	0.0	21.4	0.0	0	0	0.7				
BH05	23/08/19 12:34:00			0.0	0.0	21.4	0.0	0	0	0.4				
BH05	23/08/19 12:35:00										1.5			
BH05	23/08/19 12:36:00										1.9			
BH05	23/08/19 12:37:00										1.7			Peak Flow 3.1l/hr
BH05	23/08/19 12:38:00	1022	8									20	0.93	
BH05	27/08/19 00:00:00													
BH05	10/09/19 13:19:15			0.0	0.0	20.8	0.0	0	0	0.4				
BH05	10/09/19 13:19:30			0.0	0.0	20.7	0.0	0	0	0.4				
BH05	10/09/19 13:19:45			0.0	0.0	20.7	0.0	0	0	0.3				
BH05	10/09/19 13:20:00			0.0	0.0	20.7	0.0	0	0	0.2				
BH05	10/09/19 13:20:15			0.0	0.0	20.7	0.0	0	0	0.2				
remarks													1 00	NIDACI CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH05	10/09/19 13:20:30			0.0	0.0	20.7	0.0	0	0	0.2				
BH05	10/09/19 13:20:45			0.0	0.0	20.7	0.0	0	0	0.2				
BH05	10/09/19 13:21:00			0.0	0.0	20.7	0.0	0	0	0.2				
BH05	10/09/19 13:22:00										0.0			
BH05	10/09/19 13:23:00										0.0			
BH05	10/09/19 13:24:00										0.0			
BH05	10/09/19 13:25:00	1017	0									18	1.20	
BH05	12/09/19 00:00:00													
BH05	23/09/19 12:00:15			0.2	0.0	20.5	0.0	0	0	0.2				
BH05	23/09/19 12:00:30			0.0	0.0	20.8	0.0	0	0	0.1				
BH05	23/09/19 12:00:45			0.0	0.0	20.8	0.0	0	0	0.1				
BH05	23/09/19 12:01:00			0.0	0.0	20.8	0.0	0	0	0.0				
BH05	23/09/19 12:01:15			0.0	0.0	20.8	0.0	0	0	0.0				
BH05	23/09/19 12:01:30			0.0	0.0	20.8	0.0	0	0	0.0				
BH05	23/09/19 12:01:45			0.0	0.0	20.8	0.0	0	0	0.0				
BH05	23/09/19 12:02:00			0.0	0.0	20.8	0.0	0	0	0.0				
BH05	23/09/19 12:03:00										0.0			
BH05	23/09/19 12:04:00										0.0			
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	re	marks
BH05	23/09/19 12:05:00										0.0				
BH05	23/09/19 12:06:00	1012	0									17	1.25		
emarks													<u> </u>	ITDACT	

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH06	18/07/19 14:15:15			1.1	0.0	19.0	0.0	0	0	0.6				
BH06	18/07/19 14:15:30			1.1	0.0	19.0	0.0	0	0	0.6				
ВН06	18/07/19 14:15:45			1.1	0.0	18.9	0.0	0	0	0.6				
ВН06	18/07/19 14:16:00			1.1	0.0	18.9	0.0	0	0	0.6				
BH06	18/07/19 14:16:15			1.1	0.0	18.9	0.0	0	0	0.7				
BH06	18/07/19 14:16:30			1.1	0.0	18.9	0.0	0	0	0.7				
BH06	18/07/19 14:16:45			1.1	0.0	18.8	0.0	0	0	0.7				
BH06	18/07/19 14:17:00			1.1	0.0	18.8	0.0	0	0	0.8				
BH06	18/07/19 14:18:00										0.0			
BH06	18/07/19 14:19:00										0.0			
ВН06	18/07/19 14:20:00										0.0			
BH06	18/07/19 14:21:00	1010	0									21		Water depth not recorded.
BH06	01/08/19 12:00:15			1.7	0.0	14.2	0.0	0	0	0.8				
BH06	01/08/19 12:00:30			1.8	0.0	13.4	0.0	0	0	0.8				
ВН06	01/08/19 12:00:45			1.8	0.0	12.9	0.0	0	0	0.7				
BH06	01/08/19 12:01:00			1.9	0.0	12.3	0.0	0	0	0.7				
BH06	01/08/19 12:01:15			1.9	0.0	11.8	0.0	0	0	0.6				
BH06	01/08/19 12:01:30			2.2	0.0	11.4	0.0	0	0	0.5				
remarks													1 001	NTRACT CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH06	01/08/19 12:01:45			2.2	0.0	11.4	0.0	0	0	0.5				
BH06	01/08/19 12:02:00			2.2	0.0	11.4	0.0	0	0	0.5				
BH06	01/08/19 12:03:00										0.0			
BH06	01/08/19 12:04:00										0.0			
BH06	01/08/19 12:05:00										0.0			
BH06	01/08/19 12:06:00	1021	0									22	1.39	
BH06	14/08/19 16:05:15			2.0	0.0	20.6	0.0	0	0	0.0				
BH06	14/08/19 16:05:30			2.0	0.0	20.5	0.0	0	0	0.0				
BH06	14/08/19 16:05:45			2.0	0.0	18.9	0.0	0	0	0.0				
BH06	14/08/19 16:06:00			2.1	0.0	13.1	0.0	0	0	0.0				
BH06	14/08/19 16:06:15			2.2	0.0	12.4	0.0	0	0	0.0				
BH06	14/08/19 16:06:30			2.2	0.0	12.2	0.0	0	0	0.0				
BH06	14/08/19 16:06:45			2.2	0.0	12.2	0.0	0	0	0.0				
BH06	14/08/19 16:07:00			2.2	0.0	12.2	0.0	0	0	0.0				
BH06	14/08/19 16:08:00										3.0			
BH06	14/08/19 16:09:00										3.0			
BH06	14/08/19 16:10:00										3.0			
BH06	14/08/19 16:11:00	1008	11									18	0.90	
romarke													CONTRACT	LOUEOVED

remarks

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH06	23/08/19 15:35:15			0.0	0.0	21.7	0.0	0	0	0.1				
BH06	23/08/19 15:35:30			0.0	0.0	21.7	0.0	0	0	0.1				
BH06	23/08/19 15:35:45			0.0	0.0	21.7	0.0	0	0	0.1				
BH06	23/08/19 15:36:00			0.0	0.0	21.7	0.0	0	0	0.0				
BH06	23/08/19 15:36:15			0.0	0.0	21.7	0.0	0	0	0.0				
BH06	23/08/19 15:36:30			0.0	0.0	21.7	0.0	0	0	0.0				
BH06	23/08/19 15:36:45			0.0	0.0	21.7	0.0	0	0	0.0				
BH06	23/08/19 15:37:00			0.0	0.0	21.7	0.0	0	0	0.0				
BH06	23/08/19 15:38:00										0.0			
вно6	23/08/19 15:39:00										0.0			
вно6	23/08/19 15:40:00										0.0			
вно6	23/08/19 15:41:00	1023	0									24	0.63	
вно6	11/09/19 14:55:15			0.8	0.0	19.6	0.0	0	0	0.1				
BH06	11/09/19 14:55:30			2.3	0.0	17.0	0.0	0	0	0.1				
BH06	11/09/19 14:55:45			3.4	0.0	15.3	0.0	0	0	0.1				
BH06	11/09/19 14:56:00			3.6	0.0	14.8	0.0	0	0	0.1				
BH06	11/09/19 14:56:15			3.6	0.0	14.7	0.0	0	0	0.1				
BH06	11/09/19 14:56:30			3.7	0.0	14.6	0.0	0	0	0.0				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water re level (m - bgl)	emarks
BH06	11/09/19 14:56:45			3.7	0.0	14.5	0.0	0	0	0.0				
BH06	11/09/19 14:57:00			3.7	0.0	14.5	0.0	0	0	0.0				
BH06	11/09/19 14:58:00										0.0			
BH06	11/09/19 14:59:00										0.0			
BH06	11/09/19 15:00:00										0.0			
BH06	11/09/19 15:01:00	1018	0									19	0.84	
BH06	24/09/19 14:10:15			0.3	0.0	20.5	0.0	0	0	0.0				
BH06	24/09/19 14:10:30			0.2	0.0	20.6	0.0	0	0	0.0				
BH06	24/09/19 14:10:45			0.1	0.0	20.7	0.0	0	0	0.0				
BH06	24/09/19 14:11:00			0.1	0.0	20.8	0.0	0	0	0.0				
BH06	24/09/19 14:11:15			0.1	0.0	20.9	0.0	0	0	0.0				
BH06	24/09/19 14:11:30			0.0	0.0	20.9	0.0	0	0	0.0				
BH06	24/09/19 14:11:45			0.0	0.0	20.9	0.0	0	0	0.0				
BH06	24/09/19 14:12:00			0.0	0.0	20.9	0.0	0	0	0.0				
BH06	24/09/19 14:13:00										0.0			
BH06	24/09/19 14:14:00										0.0			
BH06	24/09/19 14:15:00										0.0			
BH06	24/09/19 14:16:00	1001	0									18	0.58	
remarks	eding capacity of gas mo												CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH06	18/07/19 13:42:15			0.3	0.1	17.9	0.0	0	0	15.4				
BH06	18/07/19 13:42:30			0.3	0.0	19.4	0.0	0	0	17.1				
BH06	18/07/19 13:42:45			0.3	0.0	19.3	0.0	0	0	17.4				
BH06	18/07/19 13:43:00			0.3	0.0	19.6	0.0	0	0	16.7				
ВН06	18/07/19 13:43:15			0.3	0.0	19.7	0.0	0	0	16.6				
ВН06	18/07/19 13:43:30			0.3	0.0	19.8	0.0	0	0	16.5				
вно6	18/07/19 13:43:45			0.3	0.0	19.8	0.0	0	0	16.2				
вно6	18/07/19 13:44:00			0.3	0.0	19.9	0.0	0	0	15.7				
вно6	18/07/19 13:45:00										0.0			
вно6	18/07/19 13:46:00										0.0			
вно6	18/07/19 13:47:00										0.0			
вно6	18/07/19 13:48:00	1010	0									21	1.63	
вно6	01/08/19 12:10:15			0.9	0.0	19.2	0.0	0	0	18.7				
вно6	01/08/19 12:10:30			0.7	0.0	20.0	0.0	0	0	19.4				
вно6	01/08/19 12:10:45			0.7	0.0	20.1	0.0	0	0	20.1				
BH06	01/08/19 12:11:00			0.7	0.0	20.2	0.0	0	0	20.4				
BH06	01/08/19 12:11:15			0.7	0.0	20.2	0.0	0	0	19.8				
BH06	01/08/19 12:11:30			0.7	0.0	20.4	0.0	0	0	19.6				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH06	01/08/19 12:11:45			0.7	0.0	20.4	0.0	0	0	18.9				
BH06	01/08/19 12:12:00			0.6	0.0	20.4	0.0	0	0	18.8				
BH06	01/08/19 12:13:00										0.0			
BH06	01/08/19 12:14:00										-0.1			
BH06	01/08/19 12:15:00										0.0			
BH06	01/08/19 12:16:00	1021	-1									22	1.42	
BH06	14/08/19 15:57:15			0.0	0.0	20.4	0.0	0	0	1.1				
BH06	14/08/19 15:57:30			0.0	0.0	20.4	0.0	0	0	1.0				
BH06	14/08/19 15:57:45			0.0	0.0	20.4	0.0	0	0	0.9				
BH06	14/08/19 15:58:00			0.0	0.0	20.4	0.0	0	0	0.7				
BH06	14/08/19 15:58:15			0.0	0.0	20.4	0.0	0	0	0.6				
BH06	14/08/19 15:58:30			0.0	0.0	20.4	0.0	0	0	0.6				
BH06	14/08/19 15:58:45			0.0	0.0	20.4	0.0	0	0	0.7				
BH06	14/08/19 15:59:00			0.0	0.0	20.4	0.0	0	0	0.6				
BH06	14/08/19 16:00:00										3.0			
BH06	14/08/19 16:01:00										3.0			
BH06	14/08/19 16:02:00										3.0			
BH06	14/08/19 16:03:00	1008	11									18	1.21	
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
ВН06	23/08/19 15:26:15			0.1	0.0	20.7	0.0	0	0	0.9				
BH06	23/08/19 15:26:30			0.1	0.0	20.9	0.0	0	0	0.8				
BH06	23/08/19 15:26:45			0.1	0.0	20.9	0.0	0	0	0.7				
BH06	23/08/19 15:27:00			0.0	0.0	21.2	0.0	0	0	0.6				
BH06	23/08/19 15:27:15			0.0	0.0	21.2	0.0	0	0	0.5				
BH06	23/08/19 15:27:30			0.0	0.0	21.2	0.0	0	0	0.4				
BH06	23/08/19 15:27:45			0.0	0.0	21.3	0.0	0	0	0.4				
BH06	23/08/19 15:28:00			0.0	0.0	21.3	0.0	0	0	0.4				
BH06	23/08/19 15:29:00										0.0			
BH06	23/08/19 15:30:00										0.0			
BH06	23/08/19 15:31:00										0.0			
BH06	23/08/19 15:32:00	1022	0									24	0.91	
BH06	27/08/19 00:00:00													
BH06	11/09/19 14:47:15			0.2	0.0	19.8	0.0	0	0	0.3				
вно6	11/09/19 14:47:30			0.0	0.0	20.5	0.0	0	0	0.2				
BH06	11/09/19 14:47:45			0.0	0.0	20.6	0.0	0	0	0.2				
BH06	11/09/19 14:48:00			0.0	0.0	20.6	0.0	0	0	0.2				
BH06	11/09/19 14:48:15			0.0	0.0	20.7	0.0	0	0	0.2				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH06	11/09/19 14:48:30			0.0	0.0	20.7	0.0	0	0	0.2				
BH06	11/09/19 14:48:45			0.0	0.0	20.7	0.0	0	0	0.1				
BH06	11/09/19 14:49:00			0.0	0.0	20.7	0.0	0	0	0.1				
BH06	11/09/19 14:50:00										0.0			
BH06	11/09/19 14:51:00										0.0			
BH06	11/09/19 14:52:00										0.0			
BH06	11/09/19 14:53:00	1018	0									19	1.06	
BH06	12/09/19 00:00:00													
BH06	24/09/19 14:00:15			0.2	0.0	20.9	0.0	0	0	0.8				
BH06	24/09/19 14:00:30			0.2	0.0	20.9	0.0	0	0	0.7				
BH06	24/09/19 14:00:45			0.2	0.0	20.9	0.0	0	0	0.7				
BH06	24/09/19 14:01:00			0.2	0.0	20.9	0.0	0	0	0.6				
BH06	24/09/19 14:01:15			0.2	0.0	20.9	0.0	0	0	0.6				
BH06	24/09/19 14:01:30			0.2	0.0	20.9	0.0	0	0	0.5				
BH06	24/09/19 14:01:45			0.2	0.0	20.9	0.0	0	0	0.5				
BH06	24/09/19 14:02:00			0.2	0.0	20.9	0.0	0	0	0.5				
BH06	24/09/19 14:03:00										0.0			
BH06	24/09/19 14:04:00										0.0			
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH06	24/09/19 14:05:00										0.0			
BH06	24/09/19 14:06:00	1001	0									18	0.93	
remarks													CONTRAC	т Тонескі

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH07	17/07/19 15:30:15			1.2	0.0	19.2	0.0	0	0	1.0				
BH07	17/07/19 15:30:30			1.8	0.0	18.7	0.0	0	0	1.0				
BH07	17/07/19 15:30:45			1.8	0.0	18.7	0.0	0	0	0.6				
BH07	17/07/19 15:31:00			1.8	0.0	18.7	0.0	0	0	0.5				
BH07	17/07/19 15:31:15			1.8	0.0	18.7	0.0	0	0	0.8				
BH07	17/07/19 15:31:30			1.8	0.0	18.7	0.0	0	0	0.9				
BH07	17/07/19 15:31:45			1.8	0.0	18.7	0.0	0	0	0.7				
BH07	17/07/19 15:32:00			1.8	0.0	18.7	0.0	0	0	0.5				
BH07	17/07/19 15:33:00										0.0			
BH07	17/07/19 15:34:00										0.0			
BH07	17/07/19 15:35:00										0.0			
BH07	17/07/19 15:36:00	1009	0									22	1.35	
BH07	31/07/19 12:00:15			2.0	0.0	19.4	0.0	0	0	0.2				
BH07	31/07/19 12:00:30			2.0	0.0	19.3	0.0	0	0	0.2				
BH07	31/07/19 12:00:45			2.0	0.0	19.3	0.0	0	0	0.2				
BH07	31/07/19 12:01:00			2.0	0.0	19.3	0.0	0	0	0.2				
BH07	31/07/19 12:01:15			2.0	0.0	19.1	0.0	0	0	0.2				
ВН07	31/07/19 12:01:30			2.0	0.0	19.1	0.0	0	0	0.2				
remarks													CONTRACT	CHECK

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH07	31/07/19 12:01:45			2.0	0.0	19.1	0.0	0	0	0.2				
вно7	31/07/19 12:02:00			2.0	0.0	19.1	0.0	0	0	0.2				
вно7	31/07/19 12:03:00										0.0			
вно7	31/07/19 12:04:00										0.0			
вно7	31/07/19 12:05:00										0.0			
ВН07	31/07/19 12:06:00	1014	0									21	1.13	
вно7	14/08/19 10:45:15			2.8	0.0	20.7	0.0	0	0	0.2				
вно7	14/08/19 10:45:30			2.8	0.0	19.4	0.0	0	0	0.1				
ВН07	14/08/19 10:45:45			2.7	0.0	18.7	0.0	0	0	0.1				
вно7	14/08/19 10:46:00			2.7	0.0	17.2	0.0	0	0	0.1				
вно7	14/08/19 10:46:15			2.7	0.0	17.2	0.0	0	0	0.1				
вно7	14/08/19 10:46:30			2.7	0.0	17.2	0.0	0	0	0.1				
вно7	14/08/19 10:46:45			2.7	0.0	17.2	0.0	0	0	0.1				
ВН07	14/08/19 10:47:00			2.7	0.0	17.2	0.0	0	0	0.1				
ВН07	14/08/19 10:48:00										0.0			
BH07	14/08/19 10:49:00										0.0			
BH07	14/08/19 10:50:00										0.0			
BH07	14/08/19 10:51:00	1009	-28									15	0.75	
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH07	23/08/19 11:20:15			0.0	0.0	21.3	0.0	0	0	0.0				
BH07	23/08/19 11:20:30			0.0	0.0	21.3	0.0	0	0	0.0				
BH07	23/08/19 11:20:45			0.0	0.0	21.3	0.0	0	0	0.0				
BH07	23/08/19 11:21:00			0.0	0.0	21.3	0.0	0	0	0.0				
BH07	23/08/19 11:21:15			0.0	0.0	21.3	0.0	0	0	0.0				
BH07	23/08/19 11:21:30			0.0	0.0	21.3	0.0	0	0	0.0				
BH07	23/08/19 11:21:45			0.0	0.0	21.3	0.0	0	0	0.0				
BH07	23/08/19 11:22:00			0.0	0.0	21.3	0.0	0	0	0.0				
BH07	23/08/19 11:23:00										0.0			
BH07	23/08/19 11:24:00										0.0			
BH07	23/08/19 11:25:00										0.0			
BH07	23/08/19 11:26:00	1026	0									20	0.88	
BH07	10/09/19 11:45:15			4.1	0.0	17.1	0.0	0	0	0.0				
BH07	10/09/19 11:45:30			4.1	0.0	17.1	0.0	0	0	0.0				
BH07	10/09/19 11:45:45			4.0	0.0	17.1	0.0	0	0	0.0				
BH07	10/09/19 11:46:00			4.0	0.0	17.1	0.0	0	0	0.0				
BH07	10/09/19 11:46:15			4.0	0.0	17.1	0.0	0	0	0.0				
BH07	10/09/19 11:46:30			3.9	0.0	17.2	0.0	0	0	0.0				
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH07	10/09/19 11:46:45			3.9	0.0	17.2	0.0	0	0	0.0				
BH07	10/09/19 11:47:00			3.8	0.0	17.2	0.0	0	0	0.0				
BH07	10/09/19 11:48:00										0.0			
ВН07	10/09/19 11:49:00										0.0			
BH07	10/09/19 11:50:00										0.0			
BH07	10/09/19 11:51:00	1018	0									17	1.03	
BH07	23/09/19 10:45:15			3.7	0.0	18.6	0.0	0	0	0.0				
BH07	23/09/19 10:45:30			4.1	0.0	18.3	0.0	0	0	0.0				
BH07	23/09/19 10:45:45			4.1	0.0	18.3	0.0	0	0	0.0				
BH07	23/09/19 10:46:00			4.1	0.0	18.3	0.0	0	0	0.0				
BH07	23/09/19 10:46:15			4.1	0.0	18.3	0.0	0	0	0.0				
BH07	23/09/19 10:46:30			4.0	0.0	18.3	0.0	0	0	0.0				
BH07	23/09/19 10:46:45			3.8	0.0	18.4	0.0	0	0	0.0				
BH07	23/09/19 10:47:00			3.8	0.0	18.4	0.0	0	0	0.0				
BH07	23/09/19 10:48:00										0.0			
BH07	23/09/19 10:49:00										0.0			
BH07	23/09/19 10:50:00										0.0			
BH07	23/09/19 10:51:00	1011	0									17	1.04	
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water r level (m - bgl)	emarks
BH07	17/07/19 15:05:15			0.4	0.0	19.9	0.0	0	0	10.0				
BH07	17/07/19 15:05:30			0.5	0.0	19.5	0.0	0	0	10.5				
BH07	17/07/19 15:05:45			0.5	0.0	19.5	0.0	0	0	11.2				
BH07	17/07/19 15:06:00			0.5	0.0	19.5	0.0	0	0	11.4				
BH07	17/07/19 15:06:15			0.5	0.0	19.4	0.0	0	0	11.4				
BH07	17/07/19 15:06:30			0.5	0.0	19.4	0.0	0	0	11.6				
BH07	17/07/19 15:06:45			0.5	0.0	19.3	0.0	0	0	11.6				
BH07	17/07/19 15:07:00			0.5	0.0	19.3	0.0	0	0	11.9				
BH07	17/07/19 15:08:00										-15.5			
BH07	17/07/19 15:09:00										-10.2			
BH07	17/07/19 15:10:00										-9.4			
BH07	17/07/19 15:11:00												1.29	
BH07	31/07/19 11:47:15			0.3	0.0	20.9	0.0	0	0	102.8				
BH07	31/07/19 11:47:30			0.3	0.0	20.9	0.0	0	0	119.8				
BH07	31/07/19 11:47:45			0.2	0.0	20.9	0.0	0	0	144.8				
BH07	31/07/19 11:48:00			0.2	0.0	20.9	0.0	0	0	140.3				
BH07	31/07/19 11:48:15			0.2	0.0	20.9	0.0	0	0	135.9				
BH07	31/07/19 11:48:30			0.2	0.0	20.9	0.0	0	0	123.4				
remarks													CONTRACT	CHECK

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH07	31/07/19 11:48:45			0.2	0.0	20.9	0.0	0	0	110.6				
BH07	31/07/19 11:49:00			0.2	0.0	20.9	0.0	0	0	112.3				
BH07	31/07/19 11:50:00										0.0			
BH07	31/07/19 11:51:00										0.0			
BH07	31/07/19 11:52:00	1015	0									21	1.03	
BH07	14/08/19 10:34:15			0.0	0.0	20.4	0.0	0	0	0.8				
BH07	14/08/19 10:34:30			0.1	0.0	20.3	0.0	0	0	1.0				
BH07	14/08/19 10:34:45			0.1	0.0	20.3	0.0	0	0	1.1				
BH07	14/08/19 10:35:00			0.2	0.0	20.2	0.0	0	0	1.0				
BH07	14/08/19 10:35:15			0.3	0.0	20.2	0.0	0	0	1.0				
BH07	14/08/19 10:35:30			0.4	0.0	20.1	0.0	0	0	1.0				
BH07	14/08/19 10:35:45			0.4	0.0	20.1	0.0	0	0	0.9				
BH07	14/08/19 10:36:00			0.4	0.0	20.0	0.0	0	0	0.8				
BH07	14/08/19 10:37:00										-5.4			
BH07	14/08/19 10:38:00										-4.4			
BH07	14/08/19 10:39:00										-3.9			
BH07	14/08/19 10:40:00	1009	-28									15	1.05	
BH07	23/08/19 11:11:15			0.1	0.0	21.3	0.0	0	0	0.2				
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH07	23/08/19 11:11:30			0.1	0.0	21.3	0.0	0	0	0.1				
BH07	23/08/19 11:11:45			0.1	0.0	21.3	0.0	0	0	0.0				
BH07	23/08/19 11:12:00			0.1	0.0	21.2	0.0	0	0	0.0				
BH07	23/08/19 11:12:15			0.1	0.0	21.2	0.0	0	0	0.0				
BH07	23/08/19 11:12:30			0.1	0.0	21.2	0.0	0	0	0.0				
BH07	23/08/19 11:12:45			0.1	0.0	21.2	0.0	0	0	0.0				
BH07	23/08/19 11:13:00			0.1	0.0	21.2	0.0	0	0	0.0				
BH07	23/08/19 11:14:00										0.0			
BH07	23/08/19 11:15:00										0.0			
BH07	23/08/19 11:16:00										0.0			
BH07	23/08/19 11:17:00												1.00	
BH07	23/08/19 11:18:00	1027	0									20		
BH07	27/08/19 00:00:00													
BH07	10/09/19 11:36:15			0.3	0.0	20.1	0.0	0	0	0.8				
BH07	10/09/19 11:36:30			0.3	0.0	20.6	0.0	0	0	0.5				
BH07	10/09/19 11:36:45			0.3	0.0	20.6	0.0	0	0	0.5				
BH07	10/09/19 11:37:00			0.3	0.0	20.5	0.0	0	0	0.5				
BH07	10/09/19 11:37:15			0.3	0.0	20.5	0.0	0	0	0.4				
remarks													CONTRACT	TOHEORE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH07	10/09/19 11:37:30			0.5	0.0	20.5	0.0	0	0	0.4				
BH07	10/09/19 11:37:45			0.5	0.0	20.6	0.0	0	0	0.2				
BH07	10/09/19 11:38:00			0.5	0.0	20.6	0.0	0	0	0.2				
BH07	10/09/19 11:39:00										-17.1			
BH07	10/09/19 11:40:00										-12.0			
BH07	10/09/19 11:41:00										-9.1			
BH07	10/09/19 11:42:00												1.08	
BH07	10/09/19 11:43:00	1018	-277									17		
BH07	12/09/19 00:00:00													
BH07	23/09/19 10:33:15			0.0	0.0	21.2	0.0	0	0	0.0				
BH07	23/09/19 10:33:30			0.0	0.0	21.2	0.0	0	0	0.0				
BH07	23/09/19 10:33:45			0.0	0.0	21.0	0.0	0	0	0.0				
BH07	23/09/19 10:34:00			0.0	0.0	21.1	0.0	0	0	0.0				
BH07	23/09/19 10:34:15			0.0	0.0	21.1	0.0	0	0	0.0				
BH07	23/09/19 10:34:30			0.0	0.0	21.1	0.0	0	0	0.0				
BH07	23/09/19 10:34:45			0.0	0.0	21.1	0.0	0	0	0.0				
BH07	23/09/19 10:35:00			0.0	0.0	21.1	0.0	0	0	0.0				
BH07	23/09/19 10:36:00										0.0			
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	re	marks
BH07	23/09/19 10:37:00										0.0				
BH07	23/09/19 10:38:00										0.0				
BH07	23/09/19 10:39:00	1011	0									17	1.06		
remarks														ITDACT	

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH08	17/07/19 13:45:15			0.0	0.0	20.3	0.0	0	0	37.0				
BH08	17/07/19 13:45:30			0.0	0.0	20.2	0.0	0	0	14.3				
BH08	17/07/19 13:45:45			0.0	0.0	20.2	0.0	0	0	18.4				
BH08	17/07/19 13:46:00			0.0	0.0	20.2	0.0	0	0	21.1				
BH08	17/07/19 13:46:15			0.0	0.0	20.2	0.0	0	0	22.4				
BH08	17/07/19 13:46:30			0.0	0.0	20.2	0.0	0	0	24.0				
BH08	17/07/19 13:46:45			0.0	0.0	20.2	0.0	0	0	23.4				
BH08	17/07/19 13:47:00			0.0	0.0	20.2	0.0	0	0	23.4				
BH08	17/07/19 13:48:00										0.0			
BH08	17/07/19 13:49:00										0.0			
BH08	17/07/19 13:50:00										0.0			
BH08	17/07/19 13:51:00	1013	0									23	1.39	
BH08	31/07/19 12:00:15			2.6	0.0	18.3	0.0	0	0	8.9				
BH08	31/07/19 12:00:30			2.6	0.0	18.2	0.0	0	0	6.7				
BH08	31/07/19 12:00:45			2.7	0.0	18.1	0.0	0	0	6.3				
BH08	31/07/19 12:01:00			2.8	0.0	18.0	0.0	0	0	5.6				
BH08	31/07/19 12:01:15			2.8	0.0	18.2	0.0	0	0	5.1				
BH08	31/07/19 12:01:30			2.7	0.0	18.2	0.0	0	0	4.1				
remarks													CONTRACT	T CHECK

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH08	31/07/19 12:01:45			2.7	0.0	18.3	0.0	0	0	3.1				
BH08	31/07/19 12:02:00			2.6	0.0	18.3	0.0	0	0	2.2				
BH08	31/07/19 12:03:00										0.0			
BH08	31/07/19 12:04:00										0.0			
BH08	31/07/19 12:05:00										0.0			
BH08	31/07/19 12:06:00	1014	0									19	0.85	
BH08	14/08/19 12:00:15			0.0	0.0	20.4	0.0	0	0	0.3				
BH08	14/08/19 12:00:30			0.0	0.0	20.4	0.0	0	0	0.3				
BH08	14/08/19 12:00:45			0.0	0.0	20.4	0.0	0	0	0.3				
BH08	14/08/19 12:01:00			0.0	0.0	20.4	0.0	0	0	0.3				
BH08	14/08/19 12:01:15			0.0	0.0	20.4	0.0	0	0	0.3				
BH08	14/08/19 12:01:30			0.0	0.0	20.4	0.0	0	0	0.3				
BH08	14/08/19 12:01:45			0.0	0.0	20.4	0.0	0	0	0.3				
BH08	14/08/19 12:02:00			0.0	0.0	20.4	0.0	0	0	0.3				
BH08	14/08/19 12:03:00										0.0			
BH08	14/08/19 12:04:00										0.3			
BH08	14/08/19 12:05:00										0.0			
BH08	14/08/19 12:06:00	1009	0									15	1.17	
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH08	23/08/19 11:45:15			0.2	0.0	20.8	0.0	0	0	0.0				
внов	23/08/19 11:45:30			0.1	0.0	21.0	0.0	0	0	0.0				
BH08	23/08/19 11:45:45			0.1	0.0	21.1	0.0	0	0	0.0				
BH08	23/08/19 11:46:00			0.0	0.0	21.1	0.0	0	0	0.0				
BH08	23/08/19 11:46:15			0.0	0.0	21.2	0.0	0	0	0.0				
BH08	23/08/19 11:46:30			0.0	0.0	21.2	0.0	0	0	0.0				
BH08	23/08/19 11:46:45			0.0	0.0	21.2	0.0	0	0	0.0				
BH08	23/08/19 11:47:00			0.0	0.0	21.2	0.0	0	0	0.0				
BH08	23/08/19 11:48:00										0.9			
BH08	23/08/19 11:49:00										0.9			
BH08	23/08/19 11:50:00										0.7			Peak Flow 1.7l/hr
BH08	23/08/19 11:51:00	1025	5									20	1.11	
BH08	10/09/19 12:15:15			0.0	0.0	20.8	0.0	0	0	0.0				
BH08	10/09/19 12:15:30			0.0	0.0	20.8	0.0	0	0	0.0				
BH08	10/09/19 12:15:45			0.0	0.0	20.8	0.0	0	0	0.0				
BH08	10/09/19 12:16:00			0.0	0.0	20.8	0.0	0	0	0.0				
BH08	10/09/19 12:16:15			0.0	0.0	20.8	0.0	0	0	0.0				
BH08	10/09/19 12:16:30			0.0	0.0	20.8	0.0	0	0	0.0				
remarks													1 00	NTRACT CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH08	10/09/19 12:16:45			0.0	0.0	20.8	0.0	0	0	0.0				
BH08	10/09/19 12:17:00			0.0	0.0	20.8	0.0	0	0	0.0				
BH08	10/09/19 12:18:00										0.0			
BH08	10/09/19 12:19:00										0.0			
BH08	10/09/19 12:20:00										0.0			
BH08	10/09/19 12:21:00	1018	0									18	1.18	
BH08	23/09/19 11:25:15			0.3	0.0	20.7	0.0	0	0	0.0				
BH08	23/09/19 11:25:30			0.2	0.0	20.9	0.0	0	0	0.0				
BH08	23/09/19 11:25:45			0.2	0.0	20.8	0.0	0	0	0.0				
BH08	23/09/19 11:26:00			0.3	0.0	20.8	0.0	0	0	0.0				
BH08	23/09/19 11:26:15			0.3	0.0	20.8	0.0	0	0	0.0				
BH08	23/09/19 11:26:30			0.3	0.0	20.8	0.0	0	0	0.0				
BH08	23/09/19 11:26:45			0.4	0.0	20.8	0.0	0	0	0.0				
BH08	23/09/19 11:27:00			0.4	0.0	20.8	0.0	0	0	0.0				
BH08	23/09/19 11:28:00										0.0			
BH08	23/09/19 11:29:00										0.0			
BH08	23/09/19 11:30:00										0.0			
BH08	23/09/19 11:31:00	1010	0									17	1.21	
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH08	17/07/19 13:30:15			0.6	0.0	18.2	0.0	0	0	10.0				
BH08	17/07/19 13:30:30			0.5	0.0	18.6	0.0	0	0	9.7				
BH08	17/07/19 13:30:45			0.3	0.0	18.8	0.0	0	0	9.2				
BH08	17/07/19 13:31:00			0.2	0.0	19.3	0.0	0	0	9.1				
BH08	17/07/19 13:31:15			0.2	0.0	19.8	0.0	0	0	9.0				
BH08	17/07/19 13:31:30			0.1	0.0	19.8	0.0	0	0	8.6				
BH08	17/07/19 13:31:45			0.1	0.0	19.8	0.0	0	0	8.4				
BH08	17/07/19 13:32:00			0.1	0.0	19.8	0.0	0	0	8.1				
BH08	17/07/19 13:33:00										-6.6			
BH08	17/07/19 13:34:00										-6.1			
BH08	17/07/19 13:35:00										-6.0			
BH08	17/07/19 13:36:00	1014	-37									23	1.42	
BH08	31/07/19 12:24:15			0.0	0.0	21.2	0.0	0	0	3.0				
BH08	31/07/19 12:24:30			0.0	0.0	21.2	0.0	0	0	3.0				
BH08	31/07/19 12:24:45			0.0	0.0	21.2	0.0	0	0	3.0				
BH08	31/07/19 12:25:00			0.0	0.0	21.2	0.0	0	0	2.7				
BH08	31/07/19 12:25:15			0.0	0.0	21.2	0.0	0	0	2.5				
BH08	31/07/19 12:25:30			0.0	0.0	21.2	0.0	0	0	2.3				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH08	31/07/19 12:25:45			0.0	0.0	21.2	0.0	0	0	1.9				
BH08	31/07/19 12:26:00			0.0	0.0	21.2	0.0	0	0	1.7				
BH08	31/07/19 12:27:00										0.0			
BH08	31/07/19 12:28:00										0.0			
BH08	31/07/19 12:29:00	1014	0									21	1.29	
BH08	01/08/19 09:00:00													
BH08	14/08/19 11:48:15			0.0	0.0	20.6	0.0	0	0	1.4				
BH08	14/08/19 11:48:30			0.0	0.0	20.4	0.0	0	0	1.3				
BH08	14/08/19 11:48:45			0.0	0.0	20.4	0.0	0	0	1.2				
BH08	14/08/19 11:49:00			0.0	0.0	20.5	0.0	0	0	1.1				
BH08	14/08/19 11:49:15			0.0	0.0	20.4	0.0	0	0	0.9				
BH08	14/08/19 11:49:30			0.0	0.0	20.4	0.0	0	0	0.9				
BH08	14/08/19 11:49:45			0.0	0.0	20.4	0.0	0	0	0.9				
BH08	14/08/19 11:50:00			0.0	0.0	20.4	0.0	0	0	0.9				
BH08	14/08/19 11:51:00										-4.5			
BH08	14/08/19 11:52:00										-3.7			
BH08	14/08/19 11:53:00										-3.5			
BH08	14/08/19 11:54:00	1009	-26									15	1.20	
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH08	23/08/19 11:35:15			0.0	0.0	21.5	0.0	0	0	0.9				
BH08	23/08/19 11:35:30			0.0	0.0	21.4	0.0	0	0	1.9				
BH08	23/08/19 11:35:45			0.0	0.0	21.3	0.0	0	0	1.9				
BH08	23/08/19 11:36:00			0.0	0.0	21.3	0.0	0	0	2.0				
BH08	23/08/19 11:36:15			0.0	0.0	21.3	0.0	0	0	2.2				
BH08	23/08/19 11:36:30			0.0	0.0	21.3	0.0	0	0	2.4				
BH08	23/08/19 11:36:45			0.0	0.0	21.3	0.0	0	0	2.4				
BH08	23/08/19 11:37:00			0.0	0.0	21.3	0.0	0	0	2.4				
BH08	23/08/19 11:38:00										0.0			
BH08	23/08/19 11:39:00										0.0			
BH08	23/08/19 11:40:00										0.0			
BH08	23/08/19 11:41:00	1026	0									20	1.09	
BH08	27/08/19 00:00:00													
BH08	10/09/19 12:07:15			0.5	0.0	20.5	0.0	0	0	0.0				
BH08	10/09/19 12:07:30			0.4	0.0	20.6	0.0	0	0	0.0				
BH08	10/09/19 12:07:45			0.2	0.0	20.8	0.0	0	0	0.0				
BH08	10/09/19 12:08:00			0.1	0.0	20.9	0.0	0	0	0.0				
BH08	10/09/19 12:08:15			0.0	0.0	20.9	0.0	0	0	0.0				
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH08	10/09/19 12:08:30			0.0	0.0	20.9	0.0	0	0	0.0				
ВН08	10/09/19 12:08:45			0.0	0.0	20.9	0.0	0	0	0.0				
внов	10/09/19 12:09:00			0.0	0.0	20.9	0.0	0	0	0.0				
ВН08	10/09/19 12:10:00										0.0			
BH08	10/09/19 12:11:00										0.0			
BH08	10/09/19 12:12:00										0.0			
BH08	10/09/19 12:13:00	1018	0									18	1.18	
BH08	12/09/19 00:00:00													
BH08	23/09/19 11:16:15			0.0	0.0	21.2	0.0	0	0	0.0				
BH08	23/09/19 11:16:30			0.0	0.0	21.1	0.0	0	0	0.0				
BH08	23/09/19 11:16:45			0.0	0.0	21.1	0.0	0	0	0.0				
BH08	23/09/19 11:17:00			0.0	0.0	21.1	0.0	0	0	0.0				
BH08	23/09/19 11:17:15			0.0	0.0	21.1	0.0	0	0	0.0				
BH08	23/09/19 11:17:30			0.0	0.0	21.1	0.0	0	0	0.0				
BH08	23/09/19 11:17:45			0.0	0.0	21.1	0.0	0	0	0.0				
BH08	23/09/19 11:18:00			0.0	0.0	21.1	0.0	0	0	0.0				
BH08	23/09/19 11:19:00										-1.9			
BH08	23/09/19 11:20:00										-1.7			
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water I level (m - bgl)	remarks
BH08	23/09/19 11:21:00										-0.6			
BH08	23/09/19 11:22:00	1010	-4									17	1.21	
remarks													CONTRACT	CHECKEL

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH09	17/07/19 12:15:15			9.7	0.0	1.0	0.0	0	0	12.8				
BH09	17/07/19 12:15:30			9.7	0.0	1.0	0.0	0	0	15.6				
BH09	17/07/19 12:15:45			9.7	0.0	0.8	0.0	0	0	17.9				
BH09	17/07/19 12:16:00			9.7	0.0	0.3	0.0	0	0	18.4				
BH09	17/07/19 12:16:15			9.7	0.0	0.3	0.0	0	0	18.5				
BH09	17/07/19 12:16:30			9.8	0.0	0.3	0.0	0	0	18.5				
BH09	17/07/19 12:16:45			9.8	0.0	0.3	0.0	0	0	18.6				
BH09	17/07/19 12:17:00			9.8	0.0	0.3	0.0	0	0	18.4				
BH09	17/07/19 12:17:00										0.0			
BH09	17/07/19 12:17:00										0.0			
BH09	17/07/19 12:17:00										0.0			
BH09	17/07/19 12:17:00	1014	0									23	1.22	
BH09	31/07/19 12:00:15			0.2	0.0	21.3	0.0	0	0	6.5				
BH09	31/07/19 12:00:30			2.4	0.0	18.1	0.0	0	0	5.3				
BH09	31/07/19 12:00:45			3.8	0.0	11.4	0.0	0	0	4.9				
BH09	31/07/19 12:01:00			5.8	0.0	6.8	0.0	0	0	4.2				
BH09	31/07/19 12:01:15			5.5	0.0	6.8	0.0	0	0	3.9				
BH09	31/07/19 12:01:30			5.2	0.0	6.8	0.0	0	0	3.8				
remarks													CONTRACT	CHECK

denotes result exceeding capacity of gas monitoring equipment VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water remarks level (m - bgl)
BH09	31/07/19 12:01:45			5.0	0.0	6.7	0.0	0	0	3.9			
ВН09	31/07/19 12:02:00			4.8	0.0	6.7	0.0	0	0	4.0			
вно9	31/07/19 12:03:00										0.0		
ВН09	31/07/19 12:04:00										0.0		
ВН09	31/07/19 12:05:00	1013	0									21	0.72
ВН09	14/08/19 12:14:15			0.0	0.0	20.5	0.0	0	0	0.5			
BH09	14/08/19 12:14:30			0.0	0.0	20.5	0.0	0	0	0.4			
BH09	14/08/19 12:14:45			0.0	0.0	20.5	0.0	0	0	0.4			
BH09	14/08/19 12:15:00			0.0	0.0	20.4	0.0	0	0	0.5			
BH09	14/08/19 12:15:15			0.0	0.0	20.4	0.0	0	0	0.4			
BH09	14/08/19 12:15:30			0.0	0.0	20.4	0.0	0	0	0.4			
BH09	14/08/19 12:15:45			0.0	0.0	20.4	0.0	0	0	0.3			
BH09	14/08/19 12:16:00			0.0	0.0	20.4	0.0	0	0	0.2			
BH09	14/08/19 12:17:00										0.0		
BH09	14/08/19 12:18:00										0.0		
BH09	14/08/19 12:19:00										0.0		
BH09	14/08/19 12:20:00	1009	0									17	0.45
BH09	23/08/19 12:15:15			0.0	0.0	21.6	0.0	0	0	0.0			
remarks													T CONTRACT TOHECK

denotes result exceeding capacity of gas monitoring equipment VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
ВН09	23/08/19 12:15:30			0.0	0.0	21.6	0.0	0	0	0.0				
BH09	23/08/19 12:15:45			0.0	0.0	21.5	0.0	0	0	0.0				
BH09	23/08/19 12:16:00			0.0	0.0	21.5	0.0	0	0	0.0				
BH09	23/08/19 12:16:15			0.0	0.0	21.5	0.0	0	0	0.0				
BH09	23/08/19 12:16:30			0.0	0.0	21.4	0.0	0	0	0.0				
BH09	23/08/19 12:16:45			0.0	0.0	21.4	0.0	0	0	0.0				
BH09	23/08/19 12:17:00			0.0	0.0	21.4	0.0	0	0	0.0				
BH09	23/08/19 12:18:00										1.2			
BH09	23/08/19 12:19:00										1.5			
BH09	23/08/19 12:20:00										1.2			Peak Flow 1.7
BH09	23/08/19 12:21:00	1024	3									20	0.58	
ВН09	10/09/19 12:35:15			10.5	0.0	5.3	0.0	0	0	0.0				
BH09	10/09/19 12:35:30			10.5	0.0	5.2	0.0	0	0	0.0				
ВН09	10/09/19 12:35:45			10.6	0.0	5.1	0.0	0	0	0.0				
BH09	10/09/19 12:36:00			10.6	0.0	5.1	0.0	0	0	0.0				
BH09	10/09/19 12:36:15			10.9	0.0	4.7	0.0	0	0	0.0				
BH09	10/09/19 12:36:30			10.9	0.0	4.6	0.0	0	0	0.0				
BH09	10/09/19 12:36:45			11.0	0.0	4.5	0.0	0	0	0.0				
remarks													1 00	NTRACT CHECKED

denotes result exceeding capacity of gas monitoring equipment VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH09	10/09/19 12:37:00			11.1	0.0	4.4	0.0	0	0	0.0				
BH09	10/09/19 12:38:00										0.0			
BH09	10/09/19 12:39:00										0.0			
BH09	10/09/19 12:40:00										0.0			
BH09	10/09/19 12:41:00	1017	0									18	0.89	
BH09	23/09/19 11:50:15			7.8	0.0	9.9	0.0	0	0	0.0				
BH09	23/09/19 11:50:30			4.3	0.0	12.8	0.0	0	0	0.0				
BH09	23/09/19 11:50:45			4.1	0.0	12.9	0.0	0	0	0.0				
BH09	23/09/19 11:51:00			3.8	0.0	13.0	0.0	0	0	0.0				
BH09	23/09/19 11:51:15			3.6	0.0	13.1	0.0	0	0	0.0				
BH09	23/09/19 11:51:30			3.4	0.0	13.2	0.0	0	0	0.0				
BH09	23/09/19 11:51:45			3.4	0.0	13.2	0.0	0	0	0.0				
BH09	23/09/19 11:52:00			3.4	0.0	13.3	0.0	0	0	0.0				
BH09	23/09/19 11:53:00										0.0			
BH09	23/09/19 11:54:00										0.0			
BH09	23/09/19 11:55:00										0.0			
BH09	23/09/19 11:56:00	1010	0									17	0.91	
remarks													CONTRACT	CHECKEL

denotes result exceeding capacity of gas monitoring equipment VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.

19mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
ВН09	17/07/19 12:02:15			0.2	0.0	19.6	0.0	0	0	45.1				
BH09	17/07/19 12:02:30			0.2	0.0	19.8	0.0	0	0	91.0				
BH09	17/07/19 12:02:45			0.1	0.0	19.8	0.0	0	0	102.6				
BH09	17/07/19 12:03:00			0.1	0.0	19.8	0.0	0	0	104.1				
BH09	17/07/19 12:03:15			0.1	0.0	19.8	0.0	0	0	99.0				
BH09	17/07/19 12:03:30			0.1	0.0	19.8	0.0	0	0	118.1				
BH09	17/07/19 12:03:45			0.1	0.0	19.8	0.0	0	0	120.3				
BH09	17/07/19 12:04:00			0.1	0.0	19.8	0.0	0	0	113.5				
BH09	17/07/19 12:05:00										0.0			
BH09	17/07/19 12:06:00										0.0			
BH09	17/07/19 12:07:00										0.0			
BH09	17/07/19 12:08:00	1015	0									23	1.42	
BH09	31/07/19 13:03:15			0.1	0.0	21.0	0.0	0	0	2.6				
BH09	31/07/19 13:03:30			0.1	0.0	21.1	0.0	0	0	2.4				
BH09	31/07/19 13:03:45			0.1	0.0	21.1	0.0	0	0	2.3				
BH09	31/07/19 13:04:00			0.1	0.0	21.1	0.0	0	0	2.1				
BH09	31/07/19 13:04:15			0.1	0.0	21.1	0.0	0	0	2.0				
BH09	31/07/19 13:04:30			0.1	0.0	21.1	0.0	0	0	2.0				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH09	31/07/19 13:04:45			0.1	0.0	21.1	0.0	0	0	1.9				
BH09	31/07/19 13:05:00			0.1	0.0	21.1	0.0	0	0	1.9				
BH09	31/07/19 13:06:00										0.0			
BH09	31/07/19 13:07:00										0.0			
BH09	31/07/19 13:08:00	1014	0									21	1.22	
BH09	14/08/19 12:25:15			0.0	0.0	20.6	0.0	0	0	0.6				
BH09	14/08/19 12:25:30			0.0	0.0	20.4	0.0	0	0	0.5				
BH09	14/08/19 12:25:45			0.0	0.0	20.4	0.0	0	0	0.5				
BH09	14/08/19 12:26:00			0.0	0.0	20.4	0.0	0	0	0.5				
BH09	14/08/19 12:26:15			0.0	0.0	20.4	0.0	0	0	0.5				
BH09	14/08/19 12:26:30			0.0	0.0	20.4	0.0	0	0	0.5				
BH09	14/08/19 12:26:45			0.0	0.0	20.4	0.0	0	0	0.5				
BH09	14/08/19 12:27:00			0.0	0.0	20.4	0.0	0	0	0.5				
BH09	14/08/19 12:28:00										0.0			
BH09	14/08/19 12:29:00										0.0			
BH09	14/08/19 12:30:00										0.0			
BH09	14/08/19 12:31:00	1009	0									17	0.50	
BH09	23/08/19 12:05:15			0.1	0.0	21.7	0.0	0	0	0.0				
remarks													CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH09	23/08/19 12:05:30			0.1	0.0	21.6	0.0	0	0	0.0				
BH09	23/08/19 12:05:45			0.1	0.0	21.5	0.0	0	0	0.0				
BH09	23/08/19 12:06:00			0.1	0.0	21.5	0.0	0	0	0.0				
BH09	23/08/19 12:06:15			0.1	0.0	21.4	0.0	0	0	0.0				
BH09	23/08/19 12:06:30			0.1	0.0	21.4	0.0	0	0	0.0				
BH09	23/08/19 12:06:45			0.1	0.0	21.4	0.0	0	0	0.0				
BH09	23/08/19 12:07:00			0.1	0.0	21.4	0.0	0	0	0.0				
BH09	23/08/19 12:08:00										1.5			
BH09	23/08/19 12:09:00										1.2			
BH09	23/08/19 12:10:00										0.9			Peak Flow 3.0 l/hr
BH09	23/08/19 12:11:00	1024	7									20	0.57	
BH09	27/08/19 00:00:00													
BH09	10/09/19 12:25:15			0.1	0.0	20.8	0.0	0	0	0.0				
BH09	10/09/19 12:25:30			0.1	0.0	20.8	0.0	0	0	0.0				
BH09	10/09/19 12:25:45			0.1	0.0	20.8	0.0	0	0	0.0				
BH09	10/09/19 12:26:00			0.1	0.0	20.8	0.0	0	0	0.0				
BH09	10/09/19 12:26:15			0.1	0.0	20.8	0.0	0	0	0.0				
BH09	10/09/19 12:26:30			0.1	0.0	20.8	0.0	0	0	0.0				
remarks													1 001	NTRACT CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water r level (m - bgl)	emarks
BH09	10/09/19 12:26:45			0.1	0.0	20.8	0.0	0	0	0.0				
BH09	10/09/19 12:27:00			0.1	0.0	20.8	0.0	0	0	0.0				
BH09	10/09/19 12:28:00										0.0			
BH09	10/09/19 12:29:00										0.0			
BH09	10/09/19 12:30:00										0.0			
BH09	10/09/19 12:31:00	1017	0									18	0.89	
BH09	12/09/19 00:00:00													
BH09	23/09/19 11:41:15			0.1	0.0	21.0	0.0	0	0	0.0				
BH09	23/09/19 11:41:30			0.1	0.0	21.0	0.0	0	0	0.0				
BH09	23/09/19 11:41:45			0.1	0.0	21.0	0.0	0	0	0.0				
BH09	23/09/19 11:42:00			0.1	0.0	21.0	0.0	0	0	0.0				
BH09	23/09/19 11:42:15			0.1	0.0	21.0	0.0	0	0	0.0				
BH09	23/09/19 11:42:30			0.1	0.0	21.0	0.0	0	0	0.0				
BH09	23/09/19 11:42:45			0.1	0.0	21.0	0.0	0	0	0.0				
BH09	23/09/19 11:43:00			0.1	0.0	21.0	0.0	0	0	0.0				
BH09	23/09/19 11:44:00										0.0			
BH09	23/09/19 11:45:00										0.0			
BH09	23/09/19 11:46:00										0.0			
remarks	eding capacity of gas mo												CONTRACT	CHECKE

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CHECKED

35338

CT

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	re	marks
BH09	23/09/19 11:47:00	1010	0									17	0.91		
emarks													1 00:	ITDACT	Tours

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH10	18/07/19 09:30:15			1.0	0.0	18.3	0.0	0	0	43.8				
BH10	18/07/19 09:30:30			1.3	0.0	15.3	0.0	0	0	53.0				
BH10	18/07/19 09:30:45			1.3	0.0	12.1	0.0	0	0	61.0				
BH10	18/07/19 09:31:00			1.9	0.0	12.0	0.0	0	0	67.2				
BH10	18/07/19 09:31:15			2.1	0.0	11.9	0.0	0	0	72.8				
BH10	18/07/19 09:31:30			2.4	0.0	11.5	0.0	0	0	76.2				
BH10	18/07/19 09:31:45			2.8	0.0	9.4	0.0	0	0	79.6				
BH10	18/07/19 09:32:00			3.2	0.0	8.8	0.0	0	0	80.1				
BH10	18/07/19 09:33:00									90.8				
BH10	18/07/19 09:34:00									94.5				
BH10	18/07/19 09:35:00									100.4				
BH10	18/07/19 09:36:00									101.2				
BH10	18/07/19 09:37:00									99.3				
BH10	18/07/19 09:38:00									105.1				
BH10	18/07/19 09:39:00									99.2				
BH10	18/07/19 09:40:00									98.1				
BH10	18/07/19 09:41:00										0.0			
BH10	18/07/19 09:42:00										0.0			
remarks													CONTRACT	T CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH10	18/07/19 09:43:00										0.0			
BH10	18/07/19 09:44:00	1012	0									18	1.29	
BH10	30/07/19 12:00:15			2.9	0.0	7.4	0.0	0	0	4.6				
BH10	30/07/19 12:00:30			3.0	0.0	6.8	0.0	0	0	4.8				
BH10	30/07/19 12:00:45			3.1	0.0	6.6	0.0	0	0	5.1				
BH10	30/07/19 12:01:00			3.1	0.0	6.4	0.0	0	0	5.3				
BH10	30/07/19 12:01:15			3.2	0.0	5.8	0.0	0	0	5.5				
BH10	30/07/19 12:01:30			3.2	0.0	5.0	0.0	0	0	5.8				
BH10	30/07/19 12:01:45			3.3	0.0	5.4	0.0	0	0	6.0				
BH10	30/07/19 12:02:00			3.4	0.0	5.3	0.0	0	0	5.9				
BH10	30/07/19 12:03:00										0.0			
BH10	30/07/19 12:04:00										0.0			
BH10	30/07/19 12:05:00	1002	0								0.0	18	0.90	
BH10	30/07/19 12:06:00	1002	0									18	0.90	
BH10	01/08/19 15:00:00													
BH10	14/08/19 14:13:15			1.6	0.0	17.8	0.0	0	0	4.0				
BH10	14/08/19 14:13:30			1.6	0.0	16.6	0.0	0	0	4.2				
BH10	14/08/19 14:13:45			1.8	0.0	16.1	0.0	0	0	4.4				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH10	14/08/19 14:14:00			2.1	0.0	15.6	0.0	0	0	4.4				
BH10	14/08/19 14:14:00			2.6	0.0	15.4	0.0	0	0	4.4				
BH10	14/08/19 14:14:15			2.4	0.0	15.6	0.0	0	0	4.4				
BH10	14/08/19 14:14:30			2.4	0.0	15.5	0.0	0	0	4.4				
BH10	14/08/19 14:14:45			2.6	0.0	15.4	0.0	0	0	4.4				
BH10	14/08/19 14:15:00										0.0			
BH10	14/08/19 14:16:00										0.0			
BH10	14/08/19 14:17:00										0.0			
BH10	14/08/19 14:18:00	1009	0									18	0.68	
BH10	23/08/19 10:35:15			1.1	0.0	18.2	0.0	0	0	18.4				
BH10	23/08/19 10:35:30			1.0	0.0	18.3	0.0	0	0	18.9				
BH10	23/08/19 10:35:45			1.0	0.0	18.4	0.0	0	0	90.2				
BH10	23/08/19 10:36:00			0.9	0.0	18.5	0.0	0	0	88.6				
BH10	23/08/19 10:36:15			0.9	0.0	18.6	0.0	0	0	80.3				
BH10	23/08/19 10:36:30			0.9	0.0	18.7	0.0	0	0	73.2				
BH10	23/08/19 10:36:45			0.8	0.0	18.8	0.0	0	0	69.0				
BH10	23/08/19 10:37:00			0.8	0.0	18.9	0.0	0	0	52.1				
BH10	23/08/19 10:38:00										0.0			
														CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH10	23/08/19 10:39:00										0.0			
BH10	23/08/19 10:40:00										0.0			
BH10	23/08/19 10:41:00	1028	0									19	0.50	
BH10	27/08/19 00:00:00													
BH10	10/09/19 10:55:15			4.6	0.0	12.4	0.0	0	0	0.4				
BH10	10/09/19 10:55:30			5.1	0.0	9.6	0.0	0	0	0.5				
BH10	10/09/19 10:55:45			5.2	0.0	9.3	0.0	0	0	0.5				
BH10	10/09/19 10:56:00			5.3	0.0	9.1	0.0	0	0	0.5				
BH10	10/09/19 10:56:15			5.3	0.0	8.9	0.0	0	0	0.6				
BH10	10/09/19 10:56:30			5.4	0.0	8.6	0.0	0	0	0.7				
BH10	10/09/19 10:56:45			5.4	0.0	8.5	0.0	0	0	0.7				
BH10	10/09/19 10:57:00			5.5	0.0	8.5	0.0	0	0	0.0				
BH10	10/09/19 10:58:00										0.0			
BH10	10/09/19 10:59:00										0.0			
BH10	10/09/19 11:00:00										0.0			
BH10	10/09/19 11:01:00	1020	0									17	1.10	
BH10	12/09/19 00:00:00													
BH10	24/09/19 11:44:15			3.9	0.0	14.6	0.0	0	0	0.0				
remarks													CONTRACT	CHECKED

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GAS AND GROUNDWATER LEVELS

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

Borehole /trial pit no.	date and time	barometric pressure (mb)	pressure differentiation (mm H ₂ O)	carbon dioxide (%)	methane (%)	oxygen (%)	LEL (%)	hydrogen sulphide (ppm)	carbon monoxide (ppm)	VOC (ppm)	gas flow (ltr/hr)	temperature (°C)	water level (m - bgl)	remarks
BH10	24/09/19 11:44:30			4.5	0.0	13.2	0.0	0	0	0.0				
BH10	24/09/19 11:44:45			4.7	0.0	13.0	0.0	0	0	0.0				
BH10	24/09/19 11:45:00			4.8	0.0	12.6	0.0	0	0	0.0				
BH10	24/09/19 11:45:15			4.8	0.0	12.5	0.0	0	0	0.0				
BH10	24/09/19 11:45:30			4.9	0.0	12.3	0.0	0	0	0.0				
BH10	24/09/19 11:45:45			5.0	0.0	12.1	0.0	0	0	0.0				
BH10	24/09/19 11:46:00			5.1	0.0	12.1	0.0	0	0	0.0				
BH10	24/09/19 11:47:00										0.0			
BH10	24/09/19 11:48:00										0.0			
BH10	24/09/19 11:49:00										0.0			
BH10	24/09/19 11:50:00	1002	0									18	1.16	

denotes result exceeding capacity of gas monitoring equipment
VOC - Photoionisation Detector Mini RAE 2000 measures VOC vapours with 10.6eV lamp calibrated against isobutylene.
50mm standpipe

CONTRACT 35338

GROUNDWATER TESTING DATA

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole /trial pit no.	install date and time	sample depth (m)	groundwater temperature (°C)	dissolved oxygen concentration (mg/l)	pН	pHmv (mV)	resistivity (ohmcm)	conductivity (uS/cm)	actual conductivity (uS/cm)	total dissolved solids (ppm)	salinity (PSU)	redox (mV)	dissolved oxygen saturation (%)	remarks
BH01 5	50mm standpipe 01/08/19 11:32:00		16.03	8.88	8.00		3277.0	368.2		239.3	0.20	-58.8		
BH01 5	50mm standpipe 27/08/19 00:00:00		12.79	3.06	7.40		1722.0	750.7		457.3	0.40	-46.1		
BH01 5	50mm standpipe 12/09/19 00:00:00		12.95	0.00	7.30		2079.6	620.0		0.4	0.30	76.7		
BH02 5	50mm standpipe 16/07/19 12:38:00		15.16	5.00	7.40		17.5	2.8		0.0	0.00	120.6		
BH02 5	50mm standpipe 31/07/19 14:16:00		22.91	8.30	6.60		29588.3	35.19		22.87	0.02	-14.7		
BH02 5	50mm standpipe 27/08/19 00:00:00		15.66	1.44	7.50		1701.8	806.8		582.4	0.50	-53.3		
BH02 5	50mm standpipe 12/09/19 00:00:00		14.13	0.74	7.30		3074.0	405.2		0.3	0.20	58.3		
BH03 5	00mm standpipe 16/07/19 14:51:00		14.95	6.77	7.90		1.0	1006.8		650.0	1.30	-42.8		
BH03 5	50mm standpipe 01/08/19 12:16:00		13.09	0.00	7.40		1695.0	763.4		496.0	0.40	-0.9		
BH03 5	50mm standpipe 27/08/19 00:00:00		13.67	1.58	6.80		1295.5	980.4		637.3	0.50	-45.7		
BH03 5	50mm standpipe 12/09/19 00:00:00		14.20	0.60	7.50		2689.0	628.3		0.3	0.20	63.8		
BH04 5	0mm standpipe 17/07/19 16:51:00		12.41	1.16	7.60		907.3	1456.5		950.0	0.70	-31.0		
BH04 5	50mm standpipe 01/08/19 13:15:00		13.03	5.51	7.00		950.0	1364.0		886.0	0.70	-0.8		
BH04 5	50mm standpipe 27/08/19 00:00:00		12.88	2.81	6.80		918.6	1434.4		927.7	0.70	-8.7		
BH04 5	50mm standpipe 12/09/19 00:00:00		12.76	0.20	7.30		2364.0	665.1		0.4	0.30	83.1		
BH05 5	50mm standpipe 18/07/19 11:21:00		31.97	1.18	7.96		9419.7	1261.6		40	0.08	-102.6		
BH05 5	50mm standpipe 01/08/19 10:30:00		20.43	8.98	7.76		26041.0	42.07		27.34	0.02	3.4		
BH05 5	50mm standpipe 27/08/19 00:00:00		18.27	9.43	7.76		9345.0	41.12		27.38	0.02	-28.5		

denotes result exceeding capacity of testing equipment

35338

CHECKED

GROUNDWATER TESTING DATA

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole /trial pit no.	install date and time	sample depth (m)	groundwater temperature (°C)	dissolved oxygen concentration (mg/l)	pН	pHmv (mV)	resistivity (ohmcm)	conductivity (uS/cm)	actual conductivity (uS/cm)	total dissolved solids (ppm)	salinity (PSU)	redox (mV)	dissolved oxygen saturation (%)	remarks
BH05 5	50mm standpipe 12/09/19 00:00:00		15.87	0.84	7.30		10230.0	171.9		0.1	0.00	8.6		
BH06 5	50mm standpipe 18/07/19 13:48:00		12.61	0.23	7.54		875.9	1462.50		940.00	0.75	-29.4		
BH06 5	50mm standpipe 01/08/19 12:16:00		15.11	0.36	7.60		1277.0	964.0		627.0	0.50	-32.8		
BH06 5	50mm standpipe 27/08/19 00:00:00		12.61	0.34	6.60		899.7	1439.6		933.4	0.70	-45.4		
BH06 5	50mm standpipe 12/09/19 00:00:00		13.31	0.75	6.90		1226.4	999.8		0.7	0.50	48.9		
BH07 5	50mm standpipe 31/07/19 11:52:00		24.64	8.14	6.70		23497.5	42.9		27.9	0.00	41.4		
BH07 5	0mm standpipe 14/08/19 10:40:00		14.50	0.20	7.90		944.6	1321.7		85.1	0.70	96.5		
BH07 5	0mm standpipe 27/08/19 00:00:00		12.62	4.15	6.20		762.1	1736.5		1128.1	0.90	-92.3		
BH07 5	50mm standpipe 12/09/19 00:00:00		12.60	0.70	7.10		1953.6	631.4		0.4	0.30	-38.6		
BH08 5	0mm standpipe 17/07/19 13:36:00		12.89	1.33	7.20		592.0	2184.6		1360.0	1.10	-144.9		
BH08 5	0mm standpipe 01/08/19 09:00:00		13.49	0.83	7.23		2593.0	494.295		321	0.24	-13.0		
BH08 5	0mm standpipe 27/08/19 00:00:00		13.31	8.49	6.10		685.0	2075.3		1216.2	1.10	-93.3		
BH08 5	0mm standpipe 12/09/19 00:00:00		12.58	0.83	7.20		1031.5	1291.7		0.8	0.60	-68.0		
BH09 5	0mm standpipe 31/07/19 13:08:00		17.34	9.65	8.10		43.3	27.4		20.0	0.01	-20.2		
BH09 5	50mm standpipe 27/08/19 00:00:00		14.19	2.44	6.40		208.1	6072.9		3764.4	3.10	-91.3		
BH09 5	50mm standpipe 12/09/19 00:00:00		15.20	9.92	7.50		19478.0	63.2		0.0	0.00	2.6		
BH10 5	50mm standpipe 18/07/19 09:44:00		21.37	7.10	7.81		2323.1	462.04		300	0.22	88.6		
BH10 5	50mm standpipe 01/08/19 15:00:00		21.00	0.00	7.91		581.3	1860.00		1209.00	0.95	-141.1		

denotes result exceeding capacity of testing equipment

35338

CHECKED

GROUNDWATER TESTING DATA

CLIENT: CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE: CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole /trial pit no.	install date and time	sample depth (m)	groundwater temperature (°C)	dissolved oxygen concentration (mg/l)	pН	pHmv (mV)	resistivity (ohmcm)	conductivity (uS/cm)	actual conductivity (uS/cm)	total dissolved solids (ppm)	salinity (PSU)	redox (mV)	dissolved oxygen saturation (%)	remarks
BH10 5	0mm standpipe 27/08/19 00:00:0	00	22.57	7.74	6.23		1498.6	702.95		455.92	0.35	-47.8		
BH10 5	0mm standpipe 12/09/19 00:00:0	00	22.04	8.21	7.50		7957.1	169.3		0.1	0.10	112.2		
remarks													CONTRAC	ст Тенеск

denotes result exceeding capacity of testing equipment

35338

APPENDIX BSUBCONTRACTOR REPORTS

STATIC CONE PENETRATION TEST

FACTUAL REPORT

CLIENT: Geotechnical Engineering Ltd

PROJECT: Cardiff Parkway

Project	Cardiff Parkway
Project No.	1190290
Client	Geotechnical Engineering Ltd
Address	Centurion House, Olympus Park, Quedgeley, Glostershire, GL2 4NF

Attention: Mr Chris Morgan,

Dear Mr. Morgan,

We have pleasure in providing a digital copy of our report and data in AGS format for the above project.

We hope that you are satisfied with the performance of our staff, equipment and reporting on this project. If you should have any queries about any aspect of the works carried out, please do not hesitate to contact us. We look forward to being of service to you in the future.

Yours faithfully,

In Situ Site Investigation Limited

Darren Ward

Director

Report Issue

Issue	Date	Prepared	Sign	Checked	Sign	Approved	Sign
01	12/07/2019	Chloe Wickens	CBU.	Luisa Dhimitri	Suf	Darren Ward	Ma

Table of Contents

1.0	INTROD	JCTION	5
2.0	FIELDW	DRK	6
2.1	CONE PI	ENETRATION TESTS	6
	2.1.1	Rig Information	6
	2.1.2	CPTU Cone	6
	2.1.3	CPTU Cone Calibration	7
	2.1.4	CPTU Cone Saturation	7
	2.1.5	Test Procedure	7
	2.1.6	In Situ Pore Pressure (u ₀)	8
2.2	POSIT	TIONING	8
2.3	DISSI	PATION TESTS	8
2.4	SEISN	/IIC TESTS	9
	2.3.1	S Wave Test Procedure	9
3.0	CONE	PENETRATION MEASURED PARAMETERS	11
3.1	DATA	PROCESSING	11
	3.1.1 Ze	ro Measurements	11
3.2	MEAS	URED PARAMETERS	11
	3.2.1	Cone Resistance (qc)	11
	3.2.2	Sleeve Friction (f _s)	11
	3.2.3	Porewater pressure (u ₂)	12
	3.2.4	Inclination (Ix, Iy)	12
3.3	ESTIN	MATED SOIL BEHAVIOUR TYPE	12
	3.3.1	Friction Ratio (R _f)	12
	3.3.2	Estimated Soil Behaviour Type (SBT)	12
	3.3.3	Pore Pressure Ratio (Bq)	13
3.4	APPL	ED CORRECTIONS	14
	3.4.1	Corrected Cone Resistance (q _t)	
	3.4.2	Depth Correction	14
4.0	GEOT	ECHNICAL DERIVED PARAMETERS	15

4.1		SOIL E	BEHAVIOUR TYPE INDEX (Ic)	15
4.2		N VAL	UE OF STANDARD PENETRATION TEST (SPT) (N ₆₀)	17
4.3		RELA	TIVE DENSITY (<i>D_r</i>)	17
4.4		FRICT	ΊΟΝ ANGLE (φ')	18
4.5		FINES	CONTENT (FC)	19
4.6		UNDR	AINED SHEAR STRENGTH (su)	20
4.7		SENS	TIVITY (S _t)	20
4.8		SOIL	JNIT WEIGHT (γ)	21
4.9		STATE	PARAMETER (ψ)	22
4.10)	IN SIT	U STRESS RATIO (K ₀)	24
4.1	1		CONSOLIDATION RATIO (OCR)	
4.12			L STRAIN YOUNG'S MODULUS (E ₀)	
4.13	3	CONS	TRAINED MODULUS (M)	26
	4.	13.1	Equivalent Oedometer Coefficient of Compressibility (mv)	27
4.14	4	SMAL	L STRAIN SHEAR MODULUS (G ₀)	27
	4.	14.1	Mass Density of Soil (ρ)	28
4.1	5	HYDR	AULIC CONDUCTIVITY (k)	28
	4.	15.1 C	oefficients of permeability (hydraulic conductivity, k _h , k _v)	30
4.16	3	CONS	OLIDATION CHARACTERISTICS	31
	4.	16.1	Rigidity Index (I _R)	31
	4.	16.2	Coefficients of consolidation (c _h , c _v)	32
4.16	3	CORR	ELATED SHEAR WAVE VELOCITY (Vs)	34
5.0		MAGN	ETOMETER TESTS MEASUREMENTS	35
5.1		DATA	PROCESSING	35
	5.	1.1 Zei	o Measurements and Data quality	35
5.2		MEAS	URED AND DERIVED PARAMETERS	35
	5.	2.1	Magnetic Field X, Magnetic Field Y and Magnetic Field Z	35
	5.	2.2	Total Magnetic Field	35
	5.	2.3	Magnetic Field Gradient	36
6.0		GEON	OR H10 VANE	37
7.0		CPTU	RESULTS APPLICATIONS	38
7.1	SC	OIL PRO	OFILING AND APPLICATIONS IN GEOTECHNICAL DESIGN	38
	7.	1.1 Soi	l Behaviour Type	38

Table of Contents

7.1.2 Soil Profiling	39
7.1.3 Applications in geotechnical design	41
8.0 REFERENCES	42
APPENDIX A	45
APPENDIX A1 – Project Summary Sheet	46
Piezocone Tests Summary Sheet	46
Coordinates	46
Dissipation Tests Summary Sheet	46
MAG Tests Summary Sheet	47
APPENDIX A2 – CPT Rig Datasheet	49
APPENDIX A3 – Cone Datasheet	50
APPENDIX A4 – Cone Calibration Certificate	51
APPENDIX A5 – Symbol List	52
English 52	
Greek 53	
APPENDIX A6 – Abbreviations	54
APPENDIX A7 – Glossary	55
APPENDIX A8 – Soils Description Tables	57
APPENDIX A9 – Site Map and Pictures from Site Works	58
APPENDIX B	59
Cone Penetration Measured Parameters and Geotechnical Derived	Parameters 59
APPENDIX C	60
Magnetometer Data	60
APPENDIX D	61
Seismic Dilatometer Marchetti (SDMT) Measurements	61
APPENDIX E	62
Vane Tests	62
APPENDIX F	63
Section	63

1.0 INTRODUCTION

In Situ Site Investigation Limited (In Situ) was engaged in a geotechnical site investigation at Cardiff Parkway at the request of Geotechnical Engineering. The site investigation consisted of completing 6 Static Piezocone Penetration Tests (CPTU), 10 Dissipation Tests and 6 Seismic Dilatometer Marchetti Tests (SDMT) to provide information on the soil conditions and derived geotechnical parameters at:

GEL Compound,
Hendre Lake Car Park,
Cypress Drive,
St Mellons,
Cardiff,
CF3 0RF

All test locations were provided by the client. A site map is included in the end of Appendix A of this report (if provided by the client). The tests were stopped when they reached the target depth as per the client's technical specifications or for other technical reasons, as detailed in the *Project Summary Table* in *Appendix A.1* and on each CPTU log included in Appendix B of this report.

The fieldwork was carried out from 17th June 2019 to 25th June 2019 as per the client's request.

The work on site and the final factual reporting have been undertaken in accordance with the international technical standard *BS EN ISO 22475-1:2012*.

2.0 FIELDWORK

2.1 CONE PENETRATION TESTS

The fieldwork activity is summarised in Table 2.1.

Table 2.1 Fieldwork Summary	
CPT Operator/s	Callum Murray & Alistair Gray
Date Started	17 th June 2019
Date Finished	25 th June 2019
In Situ S.I. Project Manager	Darren Ward
Main Contractor's Site Manager	Ari Moulsley

2.1.1 Rig Information

Details of CPTU rig used in this project are shown in Table 2.2. Full data sheet for the rig is presented in *Appendix A.2*.

Table 2.2 Rig Summary	
Rig Name	Rig Description
CPT017	19 Tonne Track Mounted CPT Rig

2.1.2 CPTU Cone

Details of electric CPTU cone (Type TE2) used in this project conforming to the requirements of Application Class 2 of *ISO* 22476-1:2012, are shown in Table 2.3.

Table 2.3 Cone Summary			
Number	Cross-section area	Filter position	
S15-CFIIP.1735	15cm ²	U ₂	
Mag.1760	15cm ²	U ₂	

A full datasheet of the cone used is shown in Appendix A.3.

The cone's measured parameters are shown in Table 2.4.

Table 2.4 Completed Fieldwork Summary

6 CPTU to a maximum depth of 9.16m. Each test measured Cone Resistance, q_c , Sleeve Friction, f_s , Porewater Pressure in the shoulder position, u_2 , Inclination in X and Y axes. 19 MAG tests to a maximum depth of 7.00m. Each MAG test measured Magnetic Field X (nT), Magnetic Field Y (nT) and Magnetic Field Z (nT).

Provision of factual report with estimated soil type, derived geotechnical parameters & AGS data file.

2.1.3 CPTU Cone Calibration

The cone resistance and sleeve friction are recorded by calibrated load cells in the cone. The CPTU load cells and pressure transducers are regularly calibrated in line with *ISO 22476-1:2012* standard by the cone manufacturer. The cone calibration certificate for the cone used at this site are presented in *Appendix A.4*.

2.1.4 CPTU Cone Saturation

The pore water pressure is recorded using a calibrated pressure transducer located in the piezocone. To ensure pore water pressure measurements are not affected by the presence of air in the measuring transducer, a de-airing procedure is carried out prior to each test. The cone and filter are saturated using a glycerine fluid with a viscosity of 10,000 CST.

2.1.5 Test Procedure

The tests are carried out in accordance with the *International Standard for Electrical Cone and Piezocone Penetration Test (ISO 22476-1:2012).*

The final depths of the tests were determined by either completion to the specified test depth or when the maximal safe capacity of the equipment was reached. A schedule of the tests performed is shown in *Appendix A.1*, which has been compiled from the operators' daily progress reports.

The data is transmitted from the digital CPTU through an umbilical cable that runs through the push rods to the data acquisition system. Results are displayed instantaneously on the computer logging screen. The results are recorded on the computer hard disc.

The rate of penetration is kept constant at 2cm/s ±10% except when penetrating very dense or hard strata. Before each test is carried out zero values are taken of the cone to check if it is within calibration. At the end of each test, zero values are taken again to see if there has been any drift during the test. These values are inspected during the post processing stage.

This is a quality check on the data and the testing procedure. Individual test zero values are shown on their corresponding test results in *Appendix B*.

2.1.6 In Situ Pore Pressure (u₀)

The in situ or hydrostatic pore pressure is required for the calculation of several derived parameters included in this report. For this report, the groundwater level is assumed at 2.00 m below ground surface, for calculation purposes. The in situ pore pressure (u₀) values are presented on the pore pressure plot, on *CPT Log 01*, which is included in *Appendix B*.

2.2 POSITIONING

Positioning and surveying of all investigated locations was the responsibility of the client. The site map and position of the tests are presented in *Appendix A.9*. All tests coordinates are included in the summary sheet in *Appendix A.1*, if supplied from the client.

2.3 DISSIPATION TESTS

As per the client's request 10 dissipation tests were performed at the required depth. A summary table of the dissipation tests is presented in *Appendix A1*.

The dissipation test is carried out by pausing the penetration at a point when there is excess porewater pressure. This excess pore pressure generated around the cone will then start to dissipate, and the decay of pore pressure with time is recorded. The rate of dissipation depends upon the coefficient of consolidation, which in turn depends on the compressibility and permeability of the soil and on the diameter of the probe. It is common to record the time to reach 50% dissipation, t_{50} . If the equilibrium pore pressure is required, the dissipation test is continued until no further dissipation is observed. This can occur rapidly in sands, but may take many hours in plastic clays. If t_{50} is not reached, due to soils' conditions, t_{40} , t_{30} or t_{20} are calculated. The calculation procedures for dissipation tests are explained in Section 4.16 of this report.

The data recorded from the dissipation tests on site is used to calculate the consolidation characteristics, as shown in Dissipation Test Graphs, *Appendix B*.

2.4 SEISMIC TESTS

The shear wave velocity, V_s data was measured every 50 cm, by using Seismic Dilatometer Marchetti, SDMT probe. Results of the tests are shown in Appendix D, where a SDMT report generated from SDMT software is included.

2.3.1 S Wave Test Procedure

SDMT tests are carried out in accordance with *ASTM D7400-14* standard and ISSMGE TC10 guideline (*Butcher et al., 2015*). The seismic module is a tubular element equipped with two S wave receivers, at a distance of 0.5 m and two P wave receivers at a distance of 0.604 m apart. The test interval varies from 0.5m to 1m depending on the client's requirements.

The S wave is generated at the ground surface by hitting a steel beam that sits under the tracks of the CPT rig with a hammer. The S wave reaches the upper and then the lower receivers and V_S is obtained by the following formula and Figure 2.1:

$$V_{S} = \frac{S_2 - S_1}{\Delta t}$$

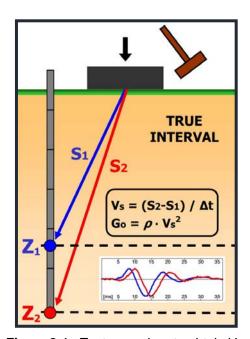


Figure 2.1: Test procedure to obtain Vs.

This process is carried out 3 times and if the coefficient of variation is less than 10% then the test is accepted. If it is more than 10% further hits are taken until the variation is less than 10%.

Once collected the Vs is calculates by re-phasing the S2 wave over the S1 wave as shown in Figure 2.2. All Vs results are presented alongside the CPT results in *Appendix D*. All seismogram data and tabular data are presented in *Appendix D*.

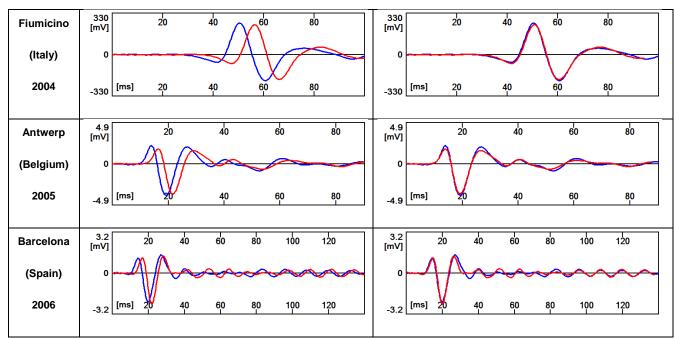


Figure 2.2: Vs wave re-phasing.

3.0 CONE PENETRATION MEASURED PARAMETERS

All measured parameters of tests carried with the CPTU cone are shown in *Appendix B* and all the information about data processing and results are given in sections 3.1, 3.2 and 3.3.

3.1 DATA PROCESSING

The measured parameters, cone end resistance, q_c , sleeve friction, f_s , porewater pressure measurements with filter in shoulder position, u_2 and inclination for x and y axis, I_x , I_y , were recorded for every 10 mm of penetration keeping a constant speed of 20 mm/s \pm 5 mm/s, which may slightly change when the cone is penetrating hard strata.

The measured data from the site works is processed and presented using specialised CPT software. The interpretations on the CPTU results were carried out following the recommendations of *Lunne et al.* (1997), *Robertson* (2015) and *BS EN ISO 22475-1:2012*. Measured parameters, mentioned in *Sections 3.2* and 3.3, were used to derive all the geotechnical parameters, which are presented in *Chapter 4.0*. The soil behaviour type method used on this report is *Robertson et al.* (1986), shown in *Figure 3.2*.

3.1.1 Zero Measurements

Before and after each CPTU test, zero measurements are recorded for each channel of the cone. The zero measurements are presented on the logs in *Appendix B*. This is a routine quality check carried out on site.

3.2 MEASURED PARAMETERS

3.2.1 Cone Resistance (q_c)

Cone resistance, q_c , is measured as the total force acting on the cone, divided by the projected area of the cone. The results are presented in MPa, on CPT Log 01, in Appendix B, scale 0-20 MPa with a minor scale printing on the same graph at 0-4 MPa.

3.2.2 Sleeve Friction (f_s)

Sleeve friction, f_s , is measured as the total frictional force acting on the friction sleeve divided by its surface area. The results are presented in kPa, on CPT Log 01, in Appendix B, using a scale of 0-500 kPa.

3.2.3 Porewater pressure (u₂)

The pore pressure, u_2 , is measured during the test. If the material is free draining and saturation is maintained it will normally measure hydrostatic pore pressure. In materials that are not free draining, it will record the total pore pressure (hydrostatic plus any excess pore pressures generated) created by the cone penetration through this material.

The filter element can be mounted in one of three positions. For all tests carried out in this project the filter was mounted in the u_2 position (see *Figure 3.1*).

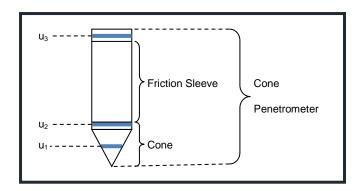


Figure 3.1: Diagram showing pore pressure filter locations (after Lunne et al., 1997)

3.2.4 Inclination (I_x, I_y)

The CPT rig was set up to obtain a thrust direction as near as possible to vertical. The CPTU cones have inclinometers incorporated to measure the non-verticality of the test. For test depths less than 15 m, significant non-verticality is unusual, provided the initial thrust direction is vertical.

3.3 ESTIMATED SOIL BEHAVIOUR TYPE

3.3.1 Friction Ratio (R_f)

The friction ratio, R_f is the ratio between the sleeve friction and the cone resistance (Lunne *et al.*, 1997).

Fricton Ratio
$$(R_f) = \left(\frac{Sleeve\ Friction\ (f_s)}{Cone\ Resistance\ (q_c)}\right) \times 100$$

3.3.2 Estimated Soil Behaviour Type (SBT)

The estimation of soil behaviour type, *SBT*, using measurements of cone resistance and sleeve friction is based upon the variations of the friction ratio and cone resistance. The friction

ratio varies depending upon whether the soil is cohesive or granular. The cone resistance varies depending on the strength and densities of the soil.

The interpretation used in this report is *Robertson et al. (1986)*, which is shown in Figure 3.2. The results are presented on *CPT Log 01*, in *Appendix B*.

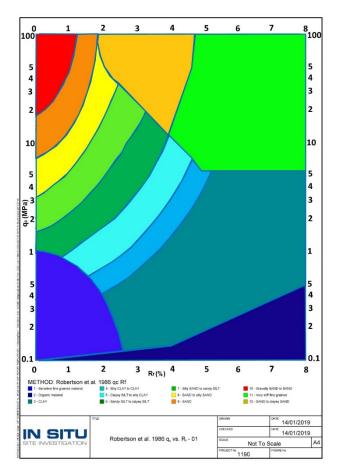


Figure 3.2: Robertson et al., 1986 soil behaviour type chart.

3.3.3 Pore Pressure Ratio (B_a)

Pore pressure ratio, B_q is the ratio between the measured pore pressure generated during penetration and the corrected cone resistance minus the total overburden stress.

Pore pressure ratio as defined by Senneset and Janbu (1985) is defined as:

$$B_q = \frac{u_2 - u_0}{q_t - \sigma_{vo}}$$

where

 u_2 is pore pressure measured between the cone and the friction sleeve

 u_0 is equilibrium pore pressure

 σ_{vo} is total overburden stress

 q_t is cone resistance corrected for unequal end area effects

3.4 APPLIED CORRECTIONS

3.4.1 Corrected Cone Resistance (q_t)

For each penetration test, the measured cone resistance, q_c , can be corrected for the "unequal area effect" due to the influence of the ambient pore water pressure acting on the cone.

The correction has been applied using the following equation by Lunne et al., 1997:

$$q_t = q_c + [u_2.(1 - \alpha)]$$

where

 α is the cone area ratio

The cone used on this project has a cone area ratio of 0.79. This value is geometrically measured.

3.4.2 Depth Correction

All tests in the report have been corrected for depth difference caused by inclination. This has been calculated using the method described in *ISO* 22476-1:2012.

To calculate the corrected depth the following formula is used:

$$z = \int_{0}^{l} C_{inc} \cdot dl$$

where

z is penetration depth, in m is penetration length, in m

C_{inc} is correction factor for the effect of the inclination of the CPTU relative to the vertical axis.

The equation for calculating the correction factor for the influence of the inclination for a biaxial inclinometer is:

$$C_{inc} = \frac{1}{\sqrt{(1 + tan^2\beta_1 + tan^2\beta_2)}}$$

where

- β_1 is the angle between the vertical axis and the projection of the axis of the CPTU on a vertical plane, in degrees
- β_2 is the angle between the vertical axis and the projection of the axis of the CPTU on a vertical plane that is perpendicular to the plane of angle β_1 , in degrees

4.0 GEOTECHNICAL DERIVED PARAMETERS

A number of empirical correlations can be used to derive geotechnical parameters from CPTU data. This report includes only the parameters which are described in this chapter. The results of all correlations used to obtain the geotechnical derived parameters are presented on *CPT Log 02* and *CPT Log 03* in *Appendix B*.

Please, note that each empirical correlation is derived for a certain type of soil, and may not be appropriate for all the soil types encountered on this project.

4.1 SOIL BEHAVIOUR TYPE INDEX (Ic)

The soil behaviour type index, I_c , was derived by *Jefferies and Davies (1991)*, and was created to simplify the application of CPTU SBT chart shown in *Chapter 3*, *Figure 3.2*. This approach has been modified for use with the *Robertson (1990)* normalised CPT soil classification chart, *Figure 4.1*. The normalised cone parameters Q_t and F_r (for definitions see *Appendix A5* Symbol List) can be combined into one Soil Behaviour Type Index, I_c , (Lunne et al., 1997).

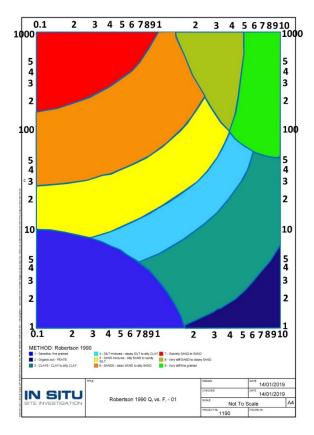


Figure 4.1: Robertson 1990 soil behaviour type chart.

The soil behaviour type index, I_c , can then be defined using *Robertson (2010)* formula, given below:

$$I_c = ((3.47 - \log Q_t)^2 + (\log F_r + 1.22)^2)^{0.5}$$

where

- Q_t is the normalized cone resistance which represents the simple normalization with a stress exponent (n) of 1.0, which applies well to clay-like soils
- F_R is the normalized friction ratio, in %

The boundaries of soil behaviour type are then given in terms of the index, I_c , presented in *Table 4.1* below.

The soils behaviour type index does not apply to zones 1, 8 and 9. The profiles of I_c provide a simple guide to the continuous variation of soil behaviour type in a given soil profile based on CPTU results, with a reliability greater than 80% compared with soil samples (Robertson, 2015).

Zone	Soil Behaviour Type	I _c
1	Sensitive fine grained	N/A
2	Organic Soils – clay	>3.6
3	Clays – silty clay to clay	2.95 – 3.6
4	Silt mixtures – clayey silt to silty clay	2.60 – 2.95
5	Sand mixtures – silty sand to sandy silt	2.05 – 2.6
6	Sands – clean sand to silty sand	1.31 – 2.05
7	Gravelly sand to dense sand	<1.31
8	Very stiff sand to clayey sand*	N/A
9	Very stiff fine grained *	N/A

^{*} Heavily over consolidated or cemented

Table 4.1: Normalized CPTU Soil Behaviour Type (SBT_n) Index values, I_c.(Robertson, 2010)

4.2 N VALUE OF STANDARD PENETRATION TEST (SPT) (N₆₀)

The derived N value of SPT, N_{60} , is strongly and directly related to the cone resistance, q_c .

In this report the N_{60} value is derived using the following correlations, developed by *Robertson* and *Wride* (1998) and *Jefferies and Davies* (1998)

1) Robertson & Wride (1998)

$$N_{60} = \frac{q_c}{8.5 \cdot p_a \left(1 - \frac{I_c}{4.6}\right)}$$

2) Jefferies and Davies (1993)

$$N_{60} = \frac{q_c}{0.85 \cdot \left(1 - \frac{I_c}{4.75}\right)}$$

where

q_c is the cone resistance

p_a is the atmospheric pressure equal to 100 kPa

I_c is the soil behaviour type index calculated as given in section 4.1

It is suggested that this method provides a better estimation of the N value than the actual SPT test, due to its poor repeatability. But in fine grained soil with high sensitivity these methods of estimating N_{60} may overestimate it (*Jefferies and Davies*, 1991).

4.3 RELATIVE DENSITY (D_r)

Relative density, D_r , is an intermediate parameter for coarse grained soils, widely used to describe sand deposits. All the research on deriving the relative density from CPTU tests results are carried out for *clean predominantly quartz sands*. The studies have shown that CPTU resistance in granular soils is controlled by sand relative density, in situ effective stresses and compressibility. The more compressible sands tend to give lower penetration resistance for a given relative density then less compressible sands.

In this report relative density is calculated using the methods suggested by *Baldi et al.*, (1986), *Jamiolkowski et al.*, (2001) and *Kulhawy and Mayne* (1990) as shown in the equations below:

1) Baldi et al., (1986)

$$D_r = \frac{1}{C_2} \cdot ln \left(\frac{q_c \cdot Wehr}{C_1 \cdot (\sigma'_{v0})^{0.55}} \right) \cdot 100$$

where

C₁ is a consolidation coefficient which is 157 for normally consolidated soils and 181 for over consolidated soils

C₂ is a consolidation coefficient which is 2.41 for normally consolidated soils and 2.46 for over consolidated soils

Wehr is a correction coefficient for calcareous soils

2) Jamiolkowski et al., (2001)

$$D_r = 100 \cdot \left[0.268 \cdot ln \left(\frac{q_t / \sigma_{atm}}{\sqrt{\sigma'_{v0} / \sigma_{atm}}} \right) + C_1 \right]$$

where

C₁ is a compressibility coefficient which is -0.675 for average compressible soils, ≤ 1.0 for high compressible soils and carbonate or calcareous sands and ≥ -2.0 for low compressible soils

qt is corrected cone resistance

 σ_{atm} is the atmospheric pressure

3) Kulhawy and Mayne, (1990)

$$D_r = \left[\frac{q_{c1}}{305 \cdot C_1 \cdot OCR^{0.18} \cdot \left(1.2 + 0.05 \cdot log(t/100)\right)}\right]^{0.5} \cdot 100$$

where

q_{c1} is the cone resistance corrected for initial vertical effective stress and atmospheric pressure, calculated by the following formula

$$q_{c1} = \frac{q_c}{\sqrt{\sigma'_{v0} \cdot \sigma_{atm}}}$$

where

q_c is the cone resistance in *kPa*

 σ'_{v0} is the initial vertical effective stress in kPa

C₁ is a compressibility coefficient which is -0.91 for low compressible sands, 1.0 for medium compressible sands and 1.09 for high compressible sands

t is time in years

4.4 FRICTION ANGLE (φ')

Friction angle, φ ', is used to express the shear strength of uncemented, coarse grained soils. In this report friction angle is derived by the correlations of *Mayne and Campanella* (2005), *Robertson and Campanella* (1983) and *Kulhawy and Mayne* (1990).

1) Mayne and Campanella, (2005)

$$\varphi' = 29.5^{\circ} \cdot B_q^{0.121} \cdot [0.256 + 0.336 \cdot B_q + log Q_t]$$

where

 B_q is the pore pressure ratio, calculated as in Session 3.3

 Q_t is the normalized cone resistance

2) Robertson and Campanella, (1983)

$$\varphi' = \tan^{-1}\left(0.1 + 0.38 \cdot \log\left(\frac{q_t}{\sigma'_{v0}}\right)\right)$$

where

is the cone resistance in kPa $q_{\text{\tiny c}}$

is the initial vertical effective stress in kPa σ'_{v0}

3) Kulhawy and Mayne, (1990)

$$\varphi' = 17.6^0 + 11.0^0 \cdot log(q_{t1})$$

where

is the corrected cone resistance corrected for initial vertical effective stress and q_{t1} atmospheric pressure, calculated by the following formula $q_{t1} = \frac{q_t}{\sqrt{\sigma'_{v0} \cdot \sigma_{atm}}}$

$$q_{t1} = \frac{q_t}{\sqrt{\sigma'_{v0} \cdot \sigma_{atm}}}$$

The method suggested by Mayne and Campanella (2005) will not provide reliable results for heavily over consolidated soils, fissured geomaterials and highly cemented or structures clays. This approach gives reliable results when pore pressure is positive and varies $0.1 < B_q < 1.0$. The correlation suggested by Robertson and Campanella (1983) estimates the peak friction angle for uncemented, unaged, moderately compressible, predominately quartz sands. For sands of higher compressibility, the method will tend to predict low friction angles. The method suggested by Kulhawy and Mayne (1990) is an alternate relationship for clean, rounded, uncemented, quartz sands.

4.5 FINES CONTENT (FC)

The fines content, FC, in this report is estimated using two different methods, one from Robertson and Wride (1998) and the other, Suzuki et al. (1998) as presented below:

1) Robertson and Wride (1998)

$$I_C < 1.26$$
: $FC = 0$
 $1.26 \le I_C \le 3.5$: $FC(\%) = 1.75I_C^{3.25} - 3.7$
 $3.5 < I_C$: $FC = 100\%$

2) Suzuki et al. (1998)

$$FC(\%) = 2.8I_C^{2.6}$$

where

I_c is the soil behaviour type index, calculated as in section 4.1

4.6 UNDRAINED SHEAR STRENGTH (su)

Estimation of undrained shear strength, s_u , from CPTU tests using corrected cone resistance is carried out using the following correlation from *Lunne et al.* (1981):

$$S_u = \frac{(q_t - \sigma_{v0})}{N_{kt}}$$

where

 N_{kt} is the empirical cone factor, which varies from 10 (6 for very soft sensitive fine grained soils) to 20. In this report 3 values are considered: 15, 17.5 and 20. N_{kt} tends to increase with increasing plasticity and decrease with increasing soil sensitivity. It decreases as B_q increases. (Lunne et al., 1997) σ_{VO} = total overburden stress.

This report only presents the undrained shear strength data on soils with soil behaviour type index, I_c values greater than 2.60.

The value of undrained shear strength, s_u to be used in analysis depends on the design problem. In general, the simple shear in the direction of loading often represents the average undrained strength. For larger, moderate to high risk projects, where high quality field and laboratory data may be available, site specific correlations should be developed based on appropriate and reliable values of s_u .

4.7 SENSITIVITY (St)

The sensitivity, S_t of clays is defined as the ratio of undisturbed peak undrained shear strength to totally remoulded undrained shear strength.

In this report S_t is calculated using two correlations developed by *Schmertmann* (1978) and *Mayne* (2007).

1) Schmertmann (1978)

$$S_t = \frac{s_u}{s_{u(rem)}} = \frac{q_t - \sigma_v}{N_{kt}} (\frac{1}{f_s})$$

where

 $s_{u(rem)}$ is the remoulded undrained shear strength. It can be assumed equal to the sleeve resistance, f_s .

2) Mayne (2007)

$$S_t = \frac{0.073 \cdot (q_t - \sigma_{v0})}{f_s}$$

For relatively sensitive clays, $S_t > 10$, the value of f_s can be very low and not very accurate, hence the estimate of sensitivity should be used as a guide only.

4.8 SOIL UNIT WEIGHT (γ)

Soil unit weight, γ in this report is calculated by using one method for sands, considered under dry conditions and two methods for clays, considered under saturated conditions. These relationships are developed by Mayne (2007) and the equations are presented below:

1) Mayne (2007)

Dry unit weight for sands:

$$\gamma_{drv} = 1.89 \cdot log(q_{t1}) + 11.82$$

Saturated unit weight for clays method 1

$$\gamma_{sat} = 8.32 \cdot log(V_S) - 1.61 \cdot log(z)$$

Saturated unit for clays method 2

$$\gamma_{sat} = 2.60 \cdot log(f_s) + 15 \cdot G_s - 26.5$$

where

qt1 is the corrected cone resistance corrected for initial vertical effective stress and atmospheric pressure, calculated by the following formula:

$$q_{t1} = \frac{q_t}{\sqrt{\sigma'_{v0} \cdot \sigma_{atm}}}$$

z is the depth

 V_s is the shear wave velocity, calculated as $V_S = 118.8 \cdot log(f_s) + 18.5$

G_s is the specific gravity of solids, typically between 2.40 and 2.90

4.9 STATE PARAMETER (ψ)

The state parameter, ψ is defined as the difference between the current void ratio, e and the void ratio at critical state e_{cs} , at the same mean effective stress for granular soils.

The problem of evaluating the state parameter from CPTU response is complex and depends on several soil parameters, including shear stiffness, shear strength, compressibility and plastic hardening. (*Jefferies and Been, 2006*)

In this report, the state parameter is calculated based on five methods as follows:

1) Been et al. (1987)

$$\psi = -\frac{\ln\left(\frac{Q_p}{k}\right)}{m}$$

and

$$Q_p = \left(\frac{3Q_t}{1 + 2K_0}\right)$$

where

Qt is the normalized cone resistance

K₀ is the coefficient of lateral earth pressure

2) Shuttle and Jefferies (1998)

$$\psi = -\frac{\ln\left(\frac{Q_p}{k}\right)}{m}$$

where

$$k = \Big(\big(3.79 + 1.12 ln(I_r) \big) \big(1 + 1.06 (M - 1.25) \big) \big(1 - 0.30 (N - 0.2) \big) (H/1000)^{0.326} \big(-1.55 (\lambda - 0.01) \big) \Big)^{1.45}$$

$$m = 1.45 (1.04 + 0.46 ln(I_r)) (1 - 0.4(M - 1.25)) (1 - 0.30(N - 0.2)) (H/100)^{0.15} (1 - 2.21(\lambda - 0.01))$$

where

Qt is the normalised cone resistance

I_r is rigidity index

K₀ is the coefficient of lateral earth pressure

M is critical state ratioN is dilation parameter

H is plastic hardening modulus;

λ is slope CSL line

3) Shuttle and Jefferies (1998)

The state parameter calculated according this third method is similar to state parameter calculated as presented in the second method, except for the rigidity index that is calculated as follows:

$$I_r = I_{r100} \left(\frac{P_a}{\sigma'_{v0}}\right)^{0.5}$$

where

 I_{r100} is rigidity index in reference pressure P_a is the reference pressure equal to 100 kPa σ'_{v0} is effective vertical overburden stress

4) Plewes (1992)

$$\psi = -\frac{\ln\left(\frac{Q_p/(1-B_q)}{k'}\right)}{m'}$$

where

$$k' = M \left(3 + \frac{0.85}{\lambda} \right)$$

$$m' = 11.9 - 13.3\lambda$$

$$\lambda = \frac{F_r}{10}$$

where

Qt is the normalised cone resistance

B_q is pore pressure ratio

K₀ is the coefficient of lateral earth pressure

F_R is normalised friction ratioM is critical state ration

5) Been and Jefferies (1992)

$$\psi = -\frac{\ln\left(\frac{Q_p/(1-B_q)}{k'}\right)}{m'}$$

where

$$k' = M\left(3 + \frac{0.85}{\lambda}\right)$$

$$m' = 11.9 - 13.3\lambda$$

$$\lambda = \frac{1}{34 - 10I_C}$$

For high-risk projects a detailed interpretation of CPTU results using laboratory results and numerical modelling can be appropriate (e.g. *Shuttle* and *Cunning*, *2007*), although soil variability can complicate the interpretation procedure. For low risk projects and in the initial screening for high-risk projects there is a need for a simple estimate of soil state.

Plewes et al (1991) provided a mean to estimate soil state using the normalised soil behaviour type, SBTn chart suggested by Jefferies and Davies (1991). Jefferies and Been (2006) suggested that soils with a state parameter less than -0.05 are dilative at large strains.

4.10 IN SITU STRESS RATIO (K₀)

There are various estimations to determine in situ stress ratio, K_0 , from CPTU in fine grained soils. In this report the methods suggested by Mayne (2007) and Kulhawy and Mayne (1990) are used, as given below:

1) Mayne (2007)

$$K_0 = (1 - \sin\varphi')OCR^{\sin\varphi'}$$

$$Max K_0 = K_p = \frac{(1 + \sin\varphi')}{(1 - \sin\varphi')}$$

$$K_0 = 0.192 \left(\frac{q_t}{\sigma_{atm}}\right)^{0.22} \left(\frac{\sigma_{atm}}{\sigma_{v0}}\right)^{0.22} OCR^{0.27}$$

where

OCR is the overconsolidation ratio, calculated as presented in session 4.12

2) Kulhawy and Mayne (1990)

$$K_0 = 0.1(\frac{q_t - \sigma_{v0}}{\sigma_{v0}'})$$

These approaches are generally limited to mechanically overconsolidated, fine grained soils. As considerable scatter exits in the database used for these correlations, in moderate to high risk projects further tests should be performed and these correlations must be considered only as a guide.

4.11 OVERCONSOLIDATION RATIO (OCR)

Overconsolidation ratio, *OCR* is defined as the ratio of the maximum past effective consolidation stress and the present effective overburden stress:

$$OCR = \frac{\sigma'_p}{\sigma'_{v0}}$$

This definition is appropriate for mechanically overconsolidated soils, where the only change has been the removal of overburden stress. For cemented and aged soils, the *OCR* may represent the ratio of the yield stress and the present effective overburden stress.

In this report σ'_{ρ} is calculated based on six methods as presented below:

1) Mayne (1995)

$$\sigma_n' = 0.33(q_t - \sigma_{v0})$$

2) Chen and Mayne (1996)

$$\sigma_p' = 0.53 \Delta u$$

3) Mayne (2005)

$$\sigma_p' = 0.6(q_t - u_2)$$

4) Robertson (2009)

$$\sigma_p' = 0.25(Q_t^{1.25} - \sigma_{v0}')$$

5) Mayne (2005)

$$\sigma_{p}' = \left[\frac{0.192 \left(\frac{q_{t}}{\sigma_{atm}} \right)^{0.125}}{(1 - sin\varphi') \left(\frac{\sigma'_{v0}}{\sigma_{atm}} \right)^{0.31}} \right]^{\left(\frac{1}{sin\varphi' - 0.27} \right)} \sigma'_{v0}$$

6) Mayne (2007)

$$\sigma_p' = 0.101 \sigma_{atm}^{0.102} (G_0)^{0.478} \sigma_{v0}'^{0.420}$$

For larger, moderate to high risk projects, where additional high-quality field and laboratory data may be available, site specific correlations should be developed based in consistent and relevant values of *OCR*.

4.12 SMALL STRAIN YOUNG'S MODULUS (E₀)

Deriving small strain undrained Young's modulus, E_0 , from CPTU is difficult. There is insufficient data available to make a direct correlation and it is recommended that c_u should be derived, then E_U estimated as a rough order of value from one of the available correlations between E_U and c_u (Meigh, 1987).

In this report the small strain Young's modulus is derived as follows:

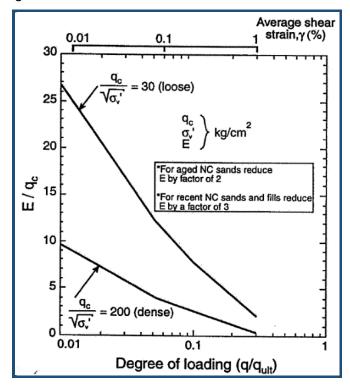
1) Defined from elastic theory:

$$E_0 = 2(1 + \nu)G_0$$

where

v is the Poisson ratio, equal to 0.2

G₀ is the small strain shear modulus calculated by the formula given below:


$$G_0 = 1634 \left(\frac{q_c}{\sqrt{\sigma'_{v0}}}\right)^{-0.75} q_c$$

2) Calculated based on the degree of loading, q_c , effective stress and reduction factor

$$E_0 = \alpha q_c$$

where

 α is calculated from degree of loading, q_c , effective stress and reduction factor, given in *Figure 4.2*

Figure 4.2: Estimation of equivalent Young's modulus for sand based on degree of loading (Robertson, 1990)

4.13 CONSTRAINED MODULUS (M)

Constrained Modulus, *M*, can be estimated by CPTU using the following empirical relationship:

$$M = \alpha_M (q_t - \sigma_{v0})$$

where

 $\alpha_{\rm M}$ varies with soil plasticity and natural water content for a wide range of fine-grained soils and organic soils. *Meigh* (1987) suggested that $\alpha_{\rm M}$ lies in the range of 2 to 8, whereas *Mayne* (2001) suggested the value of 5.

Robertson (2001) suggested that α_M varies with Q_t , such that:

When $I_c > 2.2$ (fine grained soils) use: $\alpha_M = Q_t$ when $Q_t < 14$

 $\alpha_M = 14$ when $Q_t > 14$

When $I_c < 2.2$ (coarse grained soils) use: $\alpha_M = 0.0188[10^{(0.55I_c+1.68)}]$

In this report the Constrained Modulus, *M*, is calculated after *Kulhawy and Mayne (1990)* using the equation below:

$$M = 8.25(q_t - \sigma_{v0})$$

Also, an alternative method is included in the results, developed by *Burns and Mayne (2002)* using the following relationship:

$$M = 0.02G_0$$

4.13.1 Equivalent Oedometer Coefficient of Compressibility (mv)

Equivalent oedometer coefficient of compressibility, m_{ν} can be calculated directly by the Constrained Modulus, M, as follows:

$$m_v = \frac{1}{M}$$

4.14 SMALL STRAIN SHEAR MODULUS (G₀)

Elastic theory states that the small strain shear modulus, G_0 , can be determined from the following equation:

$$G_0 = \rho v_s^2$$

where

ρ is the mass density of the soil

v_s is the shear wave velocity

In this report the small strain shear modulus, G_0 , will be presented calculated by the two methods shown below, developed by Rix and Stoke (1992) and BE, UB Rix and Stoke (1992), respectively.

$$G_0 = 1634 \left(\frac{q_c}{\sqrt{\sigma'_{\nu 0}}}\right)^{-0.75} q_c$$

$$G_0 = \frac{\gamma_{bulk}}{g} v_s^2$$

where

qc is the net cone tip resistance in kPa

 σ'_{v0} is the effective initial vertical stress in kPa

 γ_{bulk} is the bulk density of the soil v_s is the shear wave velocity

This correlation of G_0 is applicable to all soil types.

4.14.1 Mass Density of Soil (ρ)

Mass density of soil, ρ , is defined as:

$$\rho = \frac{\gamma}{g}$$

where

 γ is the elastic stiffness of the soils at shear strain less than $10^{-4}\%$, $\gamma < 10^{-4}\%$.

4.15 HYDRAULIC CONDUCTIVITY (k)

An approximate estimate of soil hydraulic conductivity or coefficient of permeability, *k*, can be made from an estimate of soil behaviour type using the CPTU *SBT chart* as presented in the table below:

SBT Zone	SBT	Range of k (m/s)	SBT _n I _c
1	Sensitive fine grained	3x10 ⁻¹⁰ to 3x10 ⁻⁸	NA
2	Organic soils-clay	1x10 ⁻¹⁰ to 1x10 ⁻⁸	I _c >3.60
3	Clay	1x10 ⁻¹⁰ to 1x10 ⁻⁹	2.95 <l<sub>c<3.60</l<sub>
4	Silt Mixture	3x10 ⁻⁹ to 1x10 ⁻⁷	2.60 <l<sub>c<2.95</l<sub>
5	Sand Mixture	1x10 ⁻⁷ to 1x10 ⁻⁵	2.05 <l<sub>c<2.60</l<sub>
6	Sand	1x10 ⁻⁵ to 1x10 ⁻³	1.31 <l<sub>c<2.05</l<sub>
7	Dense sand to gravelly sand	1x10 ⁻³ to 1	I _c <1.31
8	*Very dense/ stiff soil	1x10 ⁻⁸ to 1x10 ⁻³	NA
9	*Very stiff fine grained soil	1x10 ⁻⁹ to 1x10 ⁻⁷	NA

^{*}Overconsolidated and/ or cemented

Table 4.2: Estimated soils' permeability (k) based on the CPTU SBT chart by Robertson (2009)

The average relationship between soils' permeability, k and $SBT_n I_c$, shown in Table 4.2, can be represented by the following relationships:

When
$$1.0 < I_c \le 3.27$$
 $k = 10^{(0.952 - 3.04I_c)}$ When $3.27 < I_c \le 4.0$ $k = 10^{(-4.52 - 1.37I_c)}$

In this report, the hydraulic conductivity is estimated as a function of soil types from 2 CPTU classification charts, *Robertson et al.* (1986) and *Robertson et al.* (1990), considering both minimum and maximum values.

The hydraulic conductivity (coefficient of permeability), k, values (minimum and maximum), defined after soils' behaviour type by *Robertson et al.* (1986) are presented in *Table 4.3*, below:

SBT Zone	Soil Behaviour Type (SBT)	Range of hydraulic conductivity, <i>k (m/s</i>)
1	Sensitive fine grained	3x10 ⁻⁹ to 3x10 ⁻⁸
2	Organic soils	1x10 ⁻⁸ to 1x10 ⁻⁶
3	Clay	1x10 ⁻¹⁰ to 1x10 ⁻⁹
4	Silty CLAY to CLAY	3x10 ⁻⁹ to 1x10 ⁻⁸
5	Clayey SILT to silty CLAY	1x10 ⁻⁸ to 1x10 ⁻⁷
6	Sandy SILT to clayey SILT	1x10 ⁻⁷ to 1x10 ⁻⁶
7	Silty SAND to sandy SILT	1x10 ⁻⁵ to 1x10 ⁻⁶
8	SAND to silty SAND	1x10 ⁻⁵ to 1x10 ⁻⁴
9	SAND	1x10 ⁻⁴ to 1x10 ⁻³
10	Gravelly SAND to SAND	1x10 ⁻³ to 1
11	Very stiff fine grained	1x10 ⁻⁸ to 1x10 ⁻⁶
12	SAND to clayey SAND	3x10 ⁻⁷ to 3x10 ⁻⁴

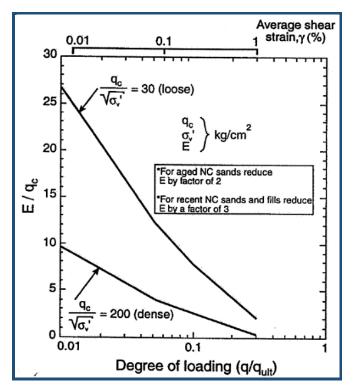
Table 4.3: Estimated soil permeability (k) based on SBT chart by Robertson et al. (1986)

The hydraulic conductivity (coefficient of permeability), *k* values (min and max), defined after soils' behaviour type by *Robertson et al.* (1990) are presented in *Table 4.4*, below:

SBT Zone	Soil Behaviour Type (SBT)	Range of hydraulic conductivity, k (m/s)
1	Sensitive fine grained	3x10 ⁻⁹ to 3x10 ⁻⁸
2	Organic soils	1x10 ⁻⁸ to 1x10 ⁻⁶
3	Clay	1x10 ⁻¹⁰ to 1x10 ⁻⁹
4	Silt Mixture	3x10 ⁻⁹ to 1x10 ⁻⁷
5	Sand Mixture	1x10 ⁻⁷ to 1x10 ⁻⁵
6	Sand	1x10 ⁻⁵ to 1x10 ⁻³
7	Gravelly sands to dense sands	1x10 ⁻³ to 1
8	Very stiff sand to clayey sand	1x10 ⁻⁸ to 1x10 ⁻⁶
9	Very stiff fine grained	1x10 ⁻⁸ to 1x10 ⁻⁶

Table 4.4: Estimated soils' permeability (k) based on SBT chart by Robertson et al. (1990).

4.15.1 Coefficients of permeability (hydraulic conductivity, kh, kv)


The horizontal coefficient of permeability can be estimated from the following expression:

$$k_h = \frac{\gamma_w}{2.3\sigma_{v0}'} RRc_h$$

where

RR is the compression ratio in the overconsolidated range. It represents the strain per log cycle of effective stress during recompression and can be determined from laboratory consolidation tests $(0.5x10^{-2} < RR < 2x10^{-2})$ was recommended by *Baligh and Levadoux*).

Robertson et al. (1992a) presented a summary of available data from dissipations and laboratory tests to determined k_h values (Figure 4.3), which can be used as a rough guide to estimate k_h from t_{50} .

Figure 4.3: Proposed chart for evaluating k_h from t_{50} for $10cm^2$ piezocones (Robertson et al., 1992a)

Jamiolkowski et al. (1985) presented Table 4.4 which can be used to estimate k_{ν} from k_{h} .

Based on the table below, the nature of clay is considered no macrofabric, or only slightly developed macrofabric, essentially homogenous deposits, so the ratio use is k_h/k_v equal to 1.5, unless it is specified otherwise from the clients.

Nature of clay	k _h / k _v
No macrofabric, or only slightly developed macrofabric, essentially homogeneous deposits	1 to 1.5
From fairly well to well developed macrofabric, e.g. sedimentary clays with discontinuous lenses and layers of more permeable material	2 to 4
Varved clays and other deposits containing embedded and more or less continuous permeable layers	3 to 15

Table 4.4: Range of field values of k_h/k_v for soft clays (from Jamiolkowski et al., 1985).

Estimation of soil permeability from CPTU and dissipation data is subject to much uncertainty and should be used as a guide only.

4.16 CONSOLIDATION CHARACTERISTICS

All the results of consolidation characteristics calculated using the formulas below are presented in *Dissipation Graphs, Appendix B*.

4.16.1 Rigidity Index (I_R)

The rigidity index, I_R , for fine grained soils is defined using the following formula, developed by *Mayne* (2001):

$$I_R = \exp\left[\left(\frac{1.5}{M} + 2.925\right)\left(\frac{q_t - \sigma_{v0}}{q_t - u_2}\right) - 2.925\right]$$

where

M is the Cam-Clay constant, slope of the critical state line defined as:

$$M = \frac{6sin\varphi'}{3 - sin\varphi'}$$

where

φ' is the internal friction angle.

The second method used to define the rigidity index, I_R , for fine grained soils is based on plasticity index and overconsolidation ratio, OCR and calculated after the relationship developed by *Keaveny and Mitchell (1986)* as follows:

$$I_R = \frac{\exp(0.0435(137 - PI))}{[1 + \ln\{1 + 0.385(OCR - 1)^{3.2}\}]^{0.8}}$$

where

PI is the plasticity index of the soil, equal to 20.

OCR is the overconsolidation ratio of the soil

4.16.2 Coefficients of consolidation (ch, cv)

The coefficient of consolidation is interlinked with the hydraulic conductivity through the formula below:

$$c = \frac{kM}{\gamma_w}$$

where

M is the 1-D constrained modulus relevant to the problem (i.e. unloading,

reloading, virgin loading, etc)

 γ_{w} $\;$ is the unit weight of water

k is the hydraulic conductivity

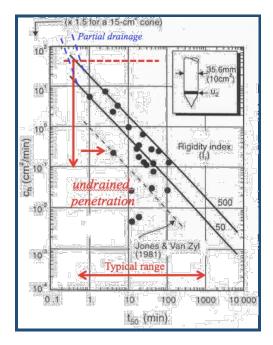
In geotechnical practice it is very difficult to measure c and k, because due to soil anisotropy c and k have different values in the horizontal, c_h and k_h and vertical c_v and k_v directions. The relevant design values depend on drainage and loading direction.

The coefficient of consolidation can be estimated by measuring the dissipation or rate of decay of pore pressure with time after a stop in CPTU penetration. The coefficient of consolidation should be interpreted at *50%* dissipation, using the following formula:

$$c = (\frac{T_{50}}{t_{50}})r_0^2$$

where

T₅₀ is theoretical time factor


t₅₀ is measured time for *50%* dissipation

r₀ is penetrometer radius

In soils of very low permeability the time for dissipation can be decreased by using smaller diameter probes. A theoretical solution for these cases is given by *Teh and Houlsby (1991)* and it is compared with data from around the world by *Robertson et al. (1992)*, as shown in *Figure 4.3*.

Figure 4.3: Average laboratory c_h values and CPTU results

(after Robertson et al. 1992, Teh and Houlsby theory shown as solid lines for $I_R = 50$ and $I_R = 500$).

 c_h estimation is controlled by soil stress history, sensitivity, anisotropy, rigidity index (relative stiffness), fabric and history. In overconsolidated soils, the pore pressure behind the cone tip can be low or negative, results in dissipation data that can initially rise before decreasing to the equilibrium values. Care is required to ensure the dissipation test to end at the right moment of time, not stopped prematurely after the initial rise.

An approximate estimate of the coefficient of consolidation in the vertical direction can be obtained using the ratios of permeability in the horizontal and vertical directions given in the Section 4.15 on Hydraulic Conductivity, since:

$$c_v = c_h(\frac{k_v}{k_h})$$

Considering that $k_h/k_v = 1.25$ (from Table 4.4), the ratio c_h/c_v used for calculation purposes in this report is equal to 1.25.

For relative short dissipations, the dissipation results can be plotted on a square-root time scale. The gradient of the initial straight line in m, where:

$$c_h = (\frac{m}{M_T})^2 r^2 I_r^{0.5}$$

where

 M_T is 1.15 for u_2 position and 10 cm² cone (r=1.78 cm).

4.16 CORRELATED SHEAR WAVE VELOCITY (V_S)

Correlated Shear wave velocity, V_s in this report is estimated after Mayne (2006), Hegazy and Mayne (1995), Mayne and Rix (1995) and Baldi et al. (1989) as follows:

1) Mayne (2006)

$$V_S = 118.8 log f_S + 18.5$$

where

f_s is in kPa

2) Hegazy and Mayne (1995)

$$V_s = (10.1\log q_t - 11.4)^{1.67} (\frac{f_s}{q_t} \cdot 100)^{0.3}$$

where

q_t, f_s are in kPa

3) Mayne and Rix (1995)

$$V_{\rm S} = 1.75(q_t)^{0.627}$$

where

qt is in kPa

4) Baldi et al. (1989)

$$V_s = 277(q_t)^{0.13} (\sigma'_{v0})^{0.13}$$

where

qt, σ'v0 are in kPa

5.0 MAGNETOMETER TESTS MEASUREMENTS

All measured parameters of MAG tests carried with the MAG cone are shown in *Appendix C*.

5.1 DATA PROCESSING

The measured parameters, Magnetic Field X (nT), Magnetic Field Y (nT) and Magnetic Field Z (nT) were recorded for every *10 mm* of penetration.

The measured magnetometer data from the site works is processed and presented using specialised CPT software. During processing the three measured components are combined to give the total magnetic field strength.

5.1.1 Zero Measurements and Data quality

Before and after each MAG test, zero measurements are recorded for each magnetic channel of the cone. The zero measurements are presented on the logs in *Appendix B*. This is a routine quality check carried out on site.

The summary of MAG tests is presented in Appendix A.1

5.2 MEASURED AND DERIVED PARAMETERS

5.2.1 Magnetic Field X, Magnetic Field Y and Magnetic Field Z

The measured parameters, Magnetic Field X, Magnetic Field Y and Magnetic Field Z are measured on site. The results are presented in *nT*, on *MAG Log*, in *Appendix B*, scale *-100000 to 100000 nT*.

5.2.2 Total Magnetic Field

Total Magnetic Field is calculated based on each measured Magnetic Field, using the formula below:

 $Magnetic\ Field\ Total = \sqrt{MAGX^2 + MAGY^2 + MAGZ^2}$

where

MAGX is the Magnetic Field measured in X direction MAGY is the Magnetic Field measured in Y direction

MAGZ is the Magnetic Field measured in Z direction

The results are presented in *nT*, on *MAG Log*, in *Appendix B*, using a scale of *0-100000 nT*.

5.2.3 Magnetic Field Gradient

Magnetic Field Gradient is calculated as the difference between two consecutive values of Total Magnetic Field.

The results are presented in nT/cm, on $MAG\ Log$, in Appendix B, using a scale of -500 to 500 nT/cm.

6.0 GEONOR H10 VANE

The Geonor vane is used to measure the in situ undrained shear strength and also the remoulded shear strength in clays. The system is used predominantly in soft clay material.

The system is designed to be pushed into the soil using a CPT rig reducing the potential soil disturbance that can be created by drilling.

Figure 6.1: Geonor H10 Vane equipment.

The vane consists of a number of different parts. There is the vane itself that sits on a number of 1m long inner rods. The inner rods run up inside the 1m long outer rods. At the base of the outer rods is the vane housing shoe in which the vane sits when it is being pushed through the ground. Finally at the top is the calibrated torsion head.

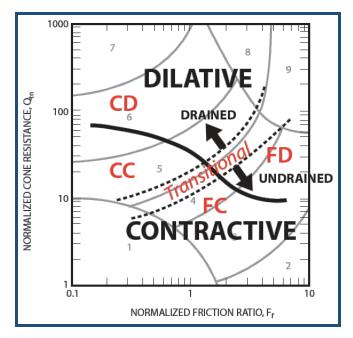
A full set of results are displayed in Appendix E

7.0 CPTU RESULTS APPLICATIONS

7.1 SOIL PROFILING AND APPLICATIONS IN GEOTECHNICAL DESIGN

7.1.1 Soil Behaviour Type

The major applications of CPTU are on *soil behaviour type and soil profiling*. Typically, the cone resistance, q_c is high in sands and low in clays, and the friction ratio, $R_f = f_s/q_t$ is low in sands and high in clays. The CPTU cannot be expected to provide accurate predictions of soil type based on *physical characteristics*, e.g. *grain size distribution*, but provides a guide to the *mechanical characteristics*, including: *strength*, *stiffness*, and *compressibility* of the soils, or the *soil behaviour type*, *SBT*.


The most commonly used CPTU soil behaviour type chart, suggested by *Robertson et al.* (1986) uses the basic CPTU measured parameters of cone resistance, q_c and friction ratio, R_f . The chart is global in nature and can provide reasonable predictions of soil behaviour type for CPTU testing. The expected overlap in some zones is modified in the interpretations of this report somewhat based on previous experience or local knowledge of the site.

Since both the penetration resistance and sleeve resistance increase with depth due to the increase in effective overburden stress, the CPTU data requires normalization for overburden stress for very shallow and/or very deep tests. A popular CPTU soil behaviour chart based on normalized CPTU data is firstly proposed by *Robertson (1990)*. The chart identifies general trends in ground response, such as: *increasing soil density*, *OCR*, *age* and *cementation* for granular soils, and *increasing stress history*, *OCR* and *soil sensitivity* for cohesive soils.

A more general normalized CPTU *SBT* chart, using large strain *soil behaviour* descriptions, proposed by *Robertson* (2012) is shown in *Figure 7.1*.

Figure 7.1: Normalized CPTU Soil Behaviour Type (SBT_n) chart, Q_{tn}-F_R using general large strain soil behaviour description (Robertson, 2012).

CD is coarse grained dilative soil-predominately drained CPTU

CC is coarse grained contractive soil-predominately drained CPTU

FD is fine grained dilative soil-predominately undrained CPTU

FC is fine grained contractive soil-predominately undrained CPTU

7.1.2 Soil Profiling

CPTU is an excellent test for soil profiling. The continuous monitoring of pore pressure during the cone penetration improves the soil stratigraphy descriptions. The pore pressure develops in response to the soil type being penetrated in the area where the pore pressure element is located. Soft, firm or stiff clays and contractive silts can show very high pore pressure. Very stiff overconsolidated clays and dilative silts can give very low or negative pore pressures same as very dense silty sands.

The thin layers of sand, or silt in a thick layer of clay, or thin layers of clay or silt in a thick layer of sand are easily distinguished during a CPTU test, which will give a response time sufficiently fast to observe pore pressure changes even in the very thin layers of soils (< 5mm), depending on the response of soil to the advancing of cone.

The sandy soils tend to produce high cone resistance and low friction ratio, whereas soft clayey soils tend to produce low cone resistance and high friction ratio. Organic soils such as peat tend to have very low cone resistance and very high friction ratio. Soils with high horizontal stresses (*high OCR*) tend to have higher cone resistance and friction ratio.

CPTU is an excellent tool to classify the soils based on their behaviour type, and not based on grain size distribution.

The measurement of sleeve friction, f_s is often less reliable than the measurement of cone resistance, q_c (*Lunne et al., 1986*), but to overpass these problems pore pressure parameter ratio, B_q , and the classification charts based on it.

For more reliability in soil profiling, the soil interpretations in this report are carried out based on three parameters measured on site, cone resistance, sleeve friction and pore pressure and three derived geotechnical parameters soil behaviour type index for all soils, undrained shear strength for cohesive soils and relative density for granular soils.

Generally, soils that fall in zones 8, 9 and 10 of Robertson et al. (1986) chart (6 and 7 of Robertson (1990) chart) represent approximately drained penetration, whereas, soils in zones 1, 2, 3, 4, 5 and 6 of Robertson et al. (1986) chart (1, 2, 3 and 4 of Robertson (1990) chart) represent approximately undrained penetration. Soils in zones 7, 11 and 12 of Robertson et al. (1986) (5, 8 and 9 of Robertson (1990) chart) may represent partially drained penetration. The classification is often influenced by changes in stress history, in situ stresses, sensitivity, stiffness, mineralogy, etc. An advantage of pore pressure measurements during cone penetration is the ability to evaluate drainage conditions more directly. (Lunne et al., 1997)

The information about the rate and manner of excess pore pressures during the dissipations significantly helps the accurate classification in the corresponding depths of dissipation tests. In very stiff, overconsolidated clayey soils, the pore pressure behind the cone is very low and sometimes negative of the equilibrium pore pressure, u_0 , whereas the pore pressure on the face of the cone is very large due to the large increase in normal stresses created by the cone penetration. When penetration is stopped in overconsolidated clays, pore pressure recorded behind the cone may initially increase before decreasing to the equilibrium pore pressure. The rise is caused by local equalization of the high pore pressure gradient around the cone.

Cone penetration in fine grained soils, such as clays and silts, is generally undrained. Cone penetration tests under undrained conditions generate high pore pressure and this reading is extremely useful, because it affects both cone resistance and sleeve friction measurements. These parameters should be corrected using the measured pore pressure.

CPTU in coarse gained soils, such as sandy or gravelly soils is generally drained. In these conditions there is no excess pore pressure generated as a result of cone penetration. Relative density has been used as the main parameter for description of sandy deposits.

7.1.3 Applications in geotechnical design

CPTU measured parameters are used to derive geotechnical parameters, which are the input in several geotechnical analyses. An alternate approach is to directly apply CPTU results to the geotechnical calculations.

As a guide, *Table 7.1* shows a summary of the applicability of CPTU results for direct design applications. The ratings shown in the table have been assigned based on current experience and represent a qualitative evaluation of the confidence level assessed to each design problem and general soil type. Details of ground conditions and project requirements can influence these ratings.

Type of soil	Pile Design	Bearing Capacity	Settlement	Compaction Control	Liquefaction
Sand	A-B	A-B	B-C	A-B	A-B
Clay	A-B	A-B	B-C	C-D	А-В
Intermediate Soils	A-B	B-C	B-C	B-C	A-B

Table 7.1: Perceived applicability of CPTU for various direct design problems.

- A is high
- B is high to moderate
- C is moderate
- D is moderate to low

8.0 REFERENCES

- ASTM D7400-14 (2015), "Standard and ISSMGE TC10 guideline", by Butcher, A. P. et al.
- Baldi et al. (1986) / Al-Hamoud and Wehr (2006), "Interpretation of CPTs and CPTUs; 2nd part: drained penetration of sands / Experience of vibrocompaction in calcareous sand of UAE"
- Been at al. (1987), "Cone Penetration Test Calibration for Erksak (Beaufort Sea) Sand", Canadian Geotechnical Journal, 24, 4, pp. 601-610
- Been and Jefferies (1992), "Towards Systematic CPT Interpretation", Proceedings Wroth Memorial Symposium, Thomas Telford, London, pp. 121–134
- Boulanger and Idriss (2014), "CPT and SPT Based Liquefaction Triggering Procedures", Report No. UCD/CGM-14/01, Centre of Geotechnical Modelling, Department of Civil and Environmental Engineering, College of Engineering, University of California at Davis
- British Standard BS5930:1999, "Code of practice for site investigations". BSI, 1999 British Standard BS EN ISO 22475-1:2012
- Burns and Mayne (2002), "Analytical Cavity Expansion Critical State Model for Piezocone Dissipation in Fine Grained Soils, Soils and Foundations", Vol. 42, No. 2, 2002
- Houlsby and Teh (1998), "Analysis of the piezocone in clay". Proceedings of the International Symposium on Penetration Testing, ISOPT-1, Orlando, 2, 777-83, Balkema Pub., Rotterdam
- Idriss and Boulanger (2008), "Soil liquefaction during earthquakes", Earthquake Engineering Research Institute, MNO-12
- International Standard for Electrical Cone and Piezocone Penetration Test, ISO 22476-1:2012
- International Standard, "Geotechnical Investigation and testing- field testing part 1: electrical cone and piezocone penetration test", ISO/ FDIS 22476-1.
- Jamiolkowski et al. (2001), Evaluation of relative density in shear strength of sands from cone penetration tests (CPT) and flat dilatometer (DMT), Soil Behaviour and Soft Ground Construction (GSP 119), American Society of Civil Engineers, Reston, Va., 2001, pp. 201-238
- Jefferies and Davies (1991), "Soil classification by the cone penetration test": Discussion. Canadian Geotechnical Journal, 28(1), 173-6
- Jefferies and Been (2006), "Soil liquefaction: a critical state approach", Taylor and Francis.

- Jones and Rust (1995), "Piezocone settlement prediction parameters for embankments on alluvium". Proceedings of the International Symposium on Cone Penetration Testing, CPT '95, Linköping, Sweden, 2, 501-8, Swedish Geotechnical Society
- Kulhawy and Mayne (1990) "Manual on estimating soil properties for foundation design". Electric Power Research Institute, EPRI, August, 1990.
- Keaveny and Mitchell (1986), "Strength of Fine-Grained Soils Using the Piezocone," Use of In Situ Tests in Geotechnical Engineering (GSP 6), American Society of Civil Engineers, Reston, Va., 1986, pp. 668–699
- Lord, Clayton and Mortimore (2002), "Engineering in chalk". Ciria Guide C574.
- Lunne and Kleven (1981), "Role of CPT in North Sea foundation engineering". Session at the ASCE National Convention: Cone Penetration Testing and Materials, St. Louis, 76-107, American Society of Engineers (ASCE).
- Lunne and Christophersen (1983), "Interpretation of cone penetrometer data for offshore sands". Proceedings of the Offshore Technology conference, Richardson, Texas, Paper No. 4464.
- Lunne, Robertson and Powell (1997), "Cone Penetration testing in Geotechnical Practice".

 Blackie.
- Mayne and Rix (1995) / Lune et al. (1997), "Gmax-qc relationships for clays", Geotechnical Testing Journal, ASTM, 16 (1), pp. 54-60/ CPT in Geotechnical Practice (1997)
- Mayne (2001), "Stress-Strain-Strength-Flow Parameters from Enhanced In-Situ Tests", International Conference on In-Situ Measurement of Soil Properties and Case Histories, Indonesia, 2001, pp. 27–48
- Mayne and Campanella (2005), "National Cooperative Highway Research Program", Synthesis 368 (2007)
- Mayne (2007), "National Cooperative Highway Research Program", Synthesis 368 (2007)
- Mitchell and Gardner (1975), "In situ measurement of volume change characteristics".

 Proceedings of the ASCE Specialty Conference on In Situ Measurements of Soil Properties, Raleigh, North Carolina, 2, 279-345, American Society of Engineers (ASCE)
- Rix and Stokoe (1992), "Correlation of Initial Tangent Modulus and Cone Resistance", Proceedings of the International Symposium on Calibration Chamber Testing, Potsdam, New York, 1991, pp. 351-362, Elsevier
- Robertson and Campanella (1983) "Interpretation of cone penetrometer test: Part 1: Sand". Canadian Geotechnical Journal, 20(4), 718-33
- Robertson, Campanella, Gillespie and Greig (1986), "Use of piezometer cone data".

 Proceedings of the ASCE Specialty Conference In Situ '86: Use of In Situ Tests in

insitusi.com

- Geotechnical Engineering, Blacksburg, 1263-80, American Society of Engineers (ACE)
- Robertson (1990), "Soil classification using the cone penetration test". Canadian Geotechnical Journal, 27(1), 151
- Robertson and Fear (1995), "Liquefaction of sands and its evaluation. IS TOKYO '95". First International Conference on Earthquake Geotechnical Engineering, Keynote Lecture, November, 1995
- Robertson and Wride (1998), "Evaluating cyclic liquefaction potential using the cone penetration test". Can. Geotech. J. Vol. 35
- Robertson (2010), "Soil behaviour type from the CPT: an update", Gregg Drilling and Testing Inc. Signal Hill, California, USA, CPT 10, paper 2-56
- Robertson (2015), "Guide to Cone Penetration Testing", 6th Edition (2015)
- Senneset and Janbu (1985), "Shear strength parameters obtained from static cone penetration tests. Strength Testing of Marine Sediments; Laboratory and In Situ Measurements". Symposium, San Diego, 1984, ASTM Special technical publication, STP 883, 41-54
- Senneset, Sandven and Janbu (1989), "The evaluation of soil parameters from piezocone tests". Transportation Research Record, No. 1235, 24-37
- Schmertmann (1978), "Guidelines for cone penetration test, performance and design", US Federal Highway Administration, Washington, DC, Report, FHWA-TS-78-209, 145
- Shuttle and Jefferies (1998), "Dimensionless and unbiased CPT interpretation in sand", International Journal for Numerical and Analytical Methods in Geomechanics, 22, pp. 351-391.
- Suzuki, Tokimatsu, Taya, and Kubota (1995), "Correlation between CPT data and dynamic properties of in situ frozen samples". Proceedings of the Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, 1, 249-52, University of Missouri Rolla.

APPENDIX A

APPENDIX A1 – Project Summary Sheet

Piezocone Tests Summary Sheet

HOLE ID	Final Depth (m)	Date of Test	Cone Used	Test Remarks
CPT 01	9.16	17/06/2019	S15-CFIP.1735	Test refused on total pressure.
CPT 02	7.91	24/06/2019	S15-CFIP.1735	Test refused on inclination.
CPT 03	7.98	21/06/2019	S15-CFIP.1735	Test refused on total pressure.
CPT 04	8.44	21/06/2019	S15-CFIP.1735	Test refused on total pressure.
CPT 05	7.64	21/06/2019	S15-CFIP.1735	Test refused on total pressure.
CPT 06	7.60	17/06/2019	S15-CFIP.1735	Test refused on total pressure.

Coordinates

HOLE ID	Easting	Northing	Elevation
CPT 01	325239.80	180759.50	5.30
CPT 02	325413.60	180803.00	4.95
CPT 03	325294.20	180730.20	5.40
CPT 04	325195.40	180664.20	5.25
CPT 05	325097.40	180591.80	5.25
CPT 06	325071.90	180693.60	5.10

Dissipation Tests Summary Sheet

HOLE ID	Final Depth (m)	Date of Test	Cone Used	Test Remarks
CPT 01	3.00	17/06/2019	S15-CFIP.1735	Test OK.
CPT 02	2.00	24/06/2019	S15-CFIP.1735	Test OK.
CPT 02	6.00	24/06/2019	S15-CFIP.1735	Test OK.
CPT 03	4.02	21/06/2019	S15-CFIP.1735	Test OK.
CPT 03	7.00	21/06/2019	S15-CFIP.1735	Test OK.
CPT 04	2.00	21/06/2019	S15-CFIP.1735	Test OK.
CPT 04	4.99	21/06/2019	S15-CFIP.1735	Test OK.
CPT 05	3.00	21/06/2019	S15-CFIP.1735	Test OK.
CPT 05	6.21	21/06/2019	S15-CFIP.1735	Test OK.
CPT 06	2.00	17/06/2019	S15-CFIP.1735	Test OK.

MAG Tests Summary Sheet

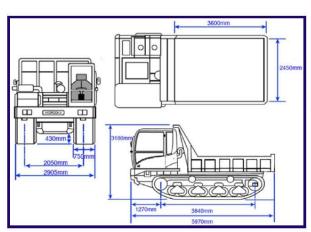
HOLE ID	Final Depth (m)	Cone Used	Mag Staus	Test Remarks
H2A010 T2	6.66	Mag 1760	Clear 3.8m onwards	Test Refused on Total Pressure
H2B034 T2	7.00	Mag 1760	Clear 3.2m onwards	Test Reached Target Depth
H2B035 T2	7.02	Mag 1760	Clear 3.8m onwards	Test Reached Target Depth
H2B036 T2	7.00	Mag 1760	Clear 4.0m onwards	Test Reached Target Depth
H2B037 T2	0.51	Mag 1760		Test Refused on Total Pressure
H2B037 T3	7.00	Mag 1760	Clear 4.4m onwards	Test Reached Target Depth
H302 T2	7.00	Mag 1760	Clear 0.4m onwards	Test Reached Target Depth
H309 T2	7.00	Mag 1760	Clear 1.8m onwards	Test Reached Target Depth
H310 T2	7.00	Mag 1760	Clear 1.8m onwards	Test Reached Target Depth
H341	7.01	Mag 1760	Clear 2.4m onwards	Test Reached Target Depth
H1026	7.00	Mag 1760	Clear 3.0m onwards	Test Reached Target Depth
H3012	7.00	Mag 1760	Clear 2.2m onwards	Test Reached Target Depth
H3014/26	7.00	Mag 1760	Clear 2.0m onwards	Test Reached Target Depth
H3015/27	7.00	Mag 1760	Clear 3.2m onwards	Test Reached Target Depth
H3024	7.00	Mag 1760	Clear 2.0m onwards	Test Reached Target Depth
H3033	7.00	Mag 1760	Clear 2.0m onwards	Test Reached Target Depth
H3040	7.00	Mag 1760	Clear 2.8m onwards	Test Reached Target Depth
H3042	7.00	Mag 1760	Clear 2.6m onwards	Test Reached Target Depth
H3043	7.00	Mag 1760	Clear 2.2m onwards	Test Reached Target Depth
H3044	7.00	Mag 1760	Clear 2.2m onwards	Test Reached Target Depth
H3045	7.00	Mag 1760	Clear 2.0m onwards	Test Reached Target Depth
H3046	7.00	Mag 1760	Clear 2.4m onwards	Test Reached Target Depth
H3013025	7.00	Mag 1760	Clear 2.2m onwards	Test Reached Target Depth
H3016028	7.00	Mag 1760	Clear 3.0m onwards	Test Reached Target Depth
H3018030	7.00	Mag 1760	Clear 4.0m onwards	Test Reached Target Depth
H3019029	7.00	Mag 1760	Clear 3.0m onwards	Test Reached Target Depth
H3019031	7.00	Mag 1760	Clear 2.0m onwards	Test Reached Target Depth
H3020032	7.00	Mag 1760	Clear 1.6m onwards	Test Reached Target Depth
H3022034	7.00	Mag 1760	Clear 2.0m onwards	Test Reached Target Depth

HS3038 7.00 Mag 1760 Clear 2.6m onwards Test Reached Target Depth

KEY for MAG Status			
Clear	Clear of UXO.		
Clear 1.0m onwards	Disturbance of magnetic field to depth shown due to artificial ground but otherwise clear.		
Obstruction	Buried obstruction or refused test due to geology. Change location, then re-test.		
Low risk 2.3m	Low risk anomaly at depth shown. Unlikely to be UXB, and clear below.		
Suspected existing pile	Disturbance of magnetic field at depth of 0-7.0m, clear below.		
Anomaly x metres	Significant magnetic anomaly at depth shown.		

APPENDIX A2 – CPT Rig Datasheet

RIGS


19 TONNE CPT TRACK MOUNTED RIG (CPT017)

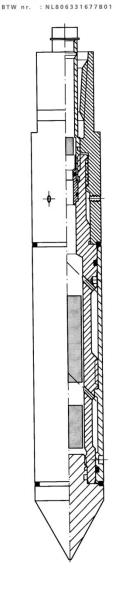
We have a variety of rigs giving us the capacity to meet our clients' needs and specifications for each individual project.

This rubber tracked rig weighs 19 tonnes and is able to push up to a depth of 40 metres, depending on the ground conditions. It has low ground bearing pressure and is ideal for soft, boggy sites which are inaccessible for our wheeled rigs.

CPT	RIG DETAILS
DRIVE SYSTEM:	RUBBER TRACKED
TOTAL WEIGHT:	19 TONNES
GROUND BEARING PRESSURE:	35kPa
CPT RAM THRUST CAPACITY:	20 TONNES
MAXIMUM PENETRATION:	30-40M DEPENDING ON THE GROUND
PENETRATION:	CONDITIONS.
PERFORMANCE RATES:	100-150M OF TESTING A DAY, DEPENDING ON ACCESS TO POSITIONS.
TYPICAL SITES FOR THIS RIG:	SOFT, BOGGY SITES. THE RIG HAS LOW GROUND BEARING PRESSURE.

IN SITU SITE INVESTIGATION

INSITUSI.COM



APPENDIX A3 – Cone Datasheet

2171 AL Sassenheim Tel. : +31 71 301 92 51 : +31 71 301 92 52 E-mail : info@geopoint.nl ING bank: 68.23.01.396 Postbank: 5226758

SPECIFICATIONS S15 SERIES **ELECTRICAL CONES**

The electronic subtraction cones have been developed to address the durability problems inherent in other cone designs. The unit consists of a single element temperature compensated strain gauge transducer for measuring both cone resistance and local sleeve friction. This design is therefore more robust than a compression type cone. The cone support electronics package is located directly behind the transducer. The precision strain gauge amplifiers and power supply eliminate the effects of cable resistance on the measurements. A standard subtraction cone is capable of measuring simultaneously the following channels: Tip, Local friction, Pore pressure, Temperature and Inclination.

GENERAL SPECIFICATIONS

Cone Tip Section Area 1,500 mm2 Friction Sleeve Surface 22,500 mm2 Total Length 325 mm Weight 4200 g

Power Supply ± 15 VDC, 100 mA. 0 - 10 VDC* Output 0 - 60°C Working Temperature Storage Temperature - 40 to + 85°C

Connector Lemo 10 pins (others on request)

TIP RESISTANCE

LOCAL SLEEVE FRICTION 100/150* kN 100/150* kN Range Range Accuracy 0.50 % FS Accuracy 0.25 % FS 150 % of range Maximum Load Maximum Load 150 % Cone Area Ratio 0.75 Sleeve Area Ratio 1.0 (EA)

PORE PRESSURE

INCLINATION 1/2/5/10* MPa 25° (biaxial) Range Range < 2 ° Accuracy 0.5 % FS Accuracy Maximum Load 150 % of range

All our equipment complies with the ISSMGE, ASTM, DIN and NEN Standards.

*Other output and voltage ranges available on request. Loadcells may be calibrated for lower ranges.

APPENDIX A4 – Cone Calibration Certificate

Rijkstraatweg 22F 2171 AL Sassenheim The Netherlands

T +31 71 301 9251 E info@eijkelkamp-geopoint.com I eijkelkamp-geopoint.com

Cone Calibration Certificate

Certificate:	GS-173	5-001	
Instrument Type:	Electric Subtraction Cone		
Model:	S15-CFIIF		
Serial number:	1735		
Calibration date:	20-11-201	8	
Client:	Insitu		
Calibrated by:	W.Volgeri	ng	
Calibration instruments			
Manufacturer:	Hottinger	Baldwin Messtechnik Gmbl-	
HBM certificate no. :	49046	.44	
Calibration conditions			
Ambient temperature:	20.4	°C	
Atmospheric pressure:	1012	mBar	
Cone specifications			
Cone base area:	1500	mm2	
Load tip resistance (nom.):	100	kN	
Friction sleeve area:	22500	mm2	
Load tip + local friction (nom.):	100	kN	
Load friction sleeve (nom.):	22.5	kN	
Load pore pressure (nom.):	2	MPa	
Inclination (nom.):	+/- 20	0	
Temperature compensation (all channels):	0+40	°C	
Maximum overload capacity (all channels):	100	%	
Cone area ratio (a):	0.79		
Max. Inaccuracy, relative to measurement value:	1.0	%	

	Tip:		Sleeve:		Pore Pressure:		Inclinometer:		
	qc in kN	mV	fs in kN	mV	MPa	mV	Degrees	X (mV)	Y (mV)
Zero points:		0216		0215		0234		, ,	
	0	0	0	0	0	0	0	2484	2440
	5	0306	5	0313	0.4	1659	-20	0423	0355
	10	0613	10	0627	0.8	3313	20	4516	4502
	15	0920	15	0941	1.2	4964			
	20	1228	20	1257	1.6	6606	1		
	25	1537	25	1572	2.0	8243	1		
	30	1845	30	1889			-		
	35	2154	35	2204	1	Max. eror,	abs. qc:	35 kPa	
	40	2462	40	2521		Max. error	, abs. fs:	2 kPa	
	45	2770	45	2835		Max. error	, abs. u2:	10 kPa	
	50	3075	50	3148	1	Max. error	, abs. I:	1 0	
	75 .	4602	75	4711	1				
	100	6123	100	6269	1				

This calibration is compliant with GeoPoint Systems internal quality system, internal calibration procedures and meets the requirements of NEN2649, NEN-EN-ISO 22476-1, NORSOK G-001, ISSMFE and ASTM using calibration equipment traceable to (Inter-) National Standards.

Approved by: B. van Eijk Date: 20-11-2018

Eijkelkamp GeoPoint SoilSolutions V.A.T. NO. NL 8584.21.422.B01 Trade Reg. Arnhem no. 70686149

IBAN NL43 RABO 0326 7904 38 BIC: RABONL2U

APPENDIX A5 – Symbol List

English

a is area ratio of the cone $\left(=\frac{A_n}{A_n}\right)$

A is area

A_c is projected area of the cone

A_n is cross sectional area of load cell or shaft

A_s is area of friction sleeve

A_{sb} is bottom end area of friction sleeve A_{st} is top end area of friction sleeve

B_q is pore pressure parameter (= $\frac{(u_2 - u_0)}{(q_t - \sigma_{v_0})}$)

 c_h is horizontal coefficient of consolidation c_v is vertical coefficient of consolidation

D is diameter

 D_r is relative density $\left(=\frac{e_{max}-e}{e_{max}-e_{min}}x100\%\right)$

e is void ratio

e_{max} is maximum void ratio
 e_{min} is minimum void ratio
 E is Young's modulus

f_s is unit sleeve friction resistance

ft is sleeve friction corrected for pore pressure effects

 F_s is total force acting on friction sleeve F_R is normalized friction ratio $(=f_s/q_t - \sigma_{vo})$

FoS is factor of safety FC is fines content

g is acceleration due to gravity

G₀ is initial or maximum shear modulus, shear stiffness

 I_c is soil behavior type index I_r is rigidity index $(= {}^G/_{S_u})$ is plasticity index

k is coefficient of permeability

 $\begin{array}{ll} k_h & \text{is coefficient of permeability in horizontal direction} \\ k_v & \text{is coefficient of permeability in vertical direction} \\ K_0 & \text{is coefficient of earth pressure at rest } (= \frac{\sigma'_{h0}}{\sigma'_{v0}}) \end{array}$

L is length

m_v is coefficient of volume changeM is constrained deformation modulus

M7.5 is earthquake magnitude of 7.5 Richter scale

N is number of blows of SPT

 $\begin{array}{lll} N_{60} & \text{is SPT energy ratio} \\ N_k & \text{is cone factor} \\ N_{ke} & \text{is cone factor} \\ N_{kt} & \text{is cone factor} \\ N_{\Delta u} & \text{is cone factor} \\ \end{array}$

 p_a is reference stress (= 100 kPa) q_c is measured cone resistance

 q_e is effective cone resistance $(=q_t - u_2)$

 q_n is net cone resistance (= $q_t - \sigma_{vo}$)

q_t is corrected cone resistance (= $q_c - (1 - a)u_2$) Q_c is total force acting on the cone

 Q_t is normalized cone resistance (= $q_t - \sigma_{v0}/\sigma'_{v0}$)

- R_f is friction ratio (= $(f_t/q_t)x100\%$ or alternatively = $(f_t/q_t)x100\%$)
- s_u is undrained shear strength
- sur is remoulded undrained shear strength
- S_t is sensitivity
- t is time
- t₅₀ is time for 50% dissipation of excess pore water pressure
- T_{50} is time factor at U = 50 %u is pore water pressure u_0 is in situ pore pressure
- $egin{array}{lll} u_1 & \mbox{is pore pressure measured on the cone} \\ u_2 & \mbox{is pore pressure measured behind the cone} \\ u_3 & \mbox{is pore pressure measured behind sleeve friction} \\ \end{array}$
- Δu is excess pore water pressureU is normalized excess pore pressure
- V_s is shear wave velocity
- z is depth

Greek

- α is constant
- α is cone roughness
- β is constant
- β₁ is the angle between the vertical axis and the projection of the axis of the CPTU on a vertical plane, in degrees
- β_2 is the angle between the vertical axis and the projection of the axis of the CPTU on a vertical plane that is perpendicular to the plane of angle β_1 , in degrees
- γ is unit weight of soil γ_w unit weight of water
- Δ is change
- Δu is excess pore pressure (= $u u_0$)
- μ is Poisson's ratio
- ρ is density
- ψ is state parameter
- σ, σ' is normal stress (total, effective) σ_h, σ_h' is horizontal stress (total, effective) σ_v, σ_v' is horizontal stress (total, effective) $\sigma_{v0}, \sigma_{v0}'$ is overburden stress (total, effective)
- Tav is average cyclic shear stress
- τ_{cy} is cyclic shear stress φ' is effective friction angle

APPENDIX A6 – Abbreviations

ASTM American Society for Testing and Materials

CPTU Cone Penetration Test with Pore Pressure Measurement (Piezocone Test)

CRR Cyclic Resistance Ratio
CSR Cyclic Stress Ratio
GWT Ground Water Table
NC Normally Consolidated
OC Over consolidated
OCR Over consolidation Ratio

PL Limit Pressure

SDMT Seismic Dilatometer Marchetti SPT Standard Penetration Test TC Technical Committee

APPENDIX A7 – Glossary

CPT

Cone Penetration Test.

Cone

The part of the cone penetrometer on which the end bearing is developed.

Cone Penetrometer

The assembly containing the *cone*, *friction sleeve*, any other sensors and measuring systems, as well as the connections to the *push-rods*.

Cone resistance, q_c

The total force acting on the cone, Q_c , divided by the projected area of the cone, A_c . $q_c = Q_c/A_c$

Corrected cone resistance, q_t

The cone resistance, q_c corrected for pore water pressure effects.

Corrected sleeve friction, f_t

The sleeve friction corrected for pore water pressure effects on the ends of the friction sleeve.

Data acquisition system

The system used to measure and record the measurements made by the *cone penetrometer*.

Dissipation Test

A test when the decay of the pore water pressure is monitored during a pause in penetration.

Filter element

The porous element inserted into the cone penetrometer to allow transmission of the pore water pressure to the pore pressure sensor, while maintaining the correct profile of the *cone penetrometer*.

Friction ratio, R_f

The ratio, expressed as a percentage of the *sleeve friction*, f_s , to the *cone resistance*, q_c , both measured at the same depth.

Friction reducer

A local enlargement on the push-rod surface, placed at a distance above the cone penetrometer, and provided to reduce the friction on the *push-rods*.

Friction sleeve

The section of the cone penetrometer upon which the sleeve friction is measured.

Normalized cone resistance, Q_c or Q_t

The *cone resistance* expressed in a non-dimensional form and taking account of stress changes in situ, $Q_c = \frac{(q_c - \sigma_{v0})}{\sigma'_{v0}}$, or when the *corrected cone resistance* is used $Q_t = \frac{(q_t - \sigma_{v0})}{\sigma'_{v0}}$. Where σ_{v0} and σ'_{v0} are the total and effective vertical stress respectively.

Net cone resistance, q_n

The *corrected cone resistance* minus the vertical total stress. $q_n = q_t - \sigma_{v0}$

Normalized friction ratio, F_r

The sleeve friction normalized by the net cone resistance.

Piezocone

A cone penetrometer containing a pore pressure sensor.

Pore pressure, u

The pore pressure generated during penetration and measured by a pore pressure sensor, u_1 when measured on the cone, u_2 when measured just behind the cone and u_3 when measured just behind the friction sleeve.

Pore pressure ratio, B_q

The net pore pressure normalized with respect to the net cone resistance.

Push-rods

The thick-walled tubes or rods used for advancing the cone penetrometer.

Rig machine

The equipment which pushes the cone penetrometer and rods into the ground.

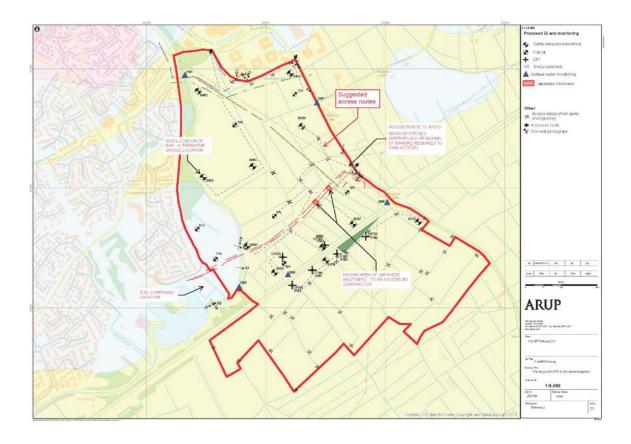
Sleeve friction, fs

The total frictional force acting on the *friction sleeve*, F_s , divided by its *surface area*, A_s . $f_s = \frac{F_s}{A_s}$

APPENDIX A8 – Soils Description Tables

GRANULAR SOILS (Sands and Gravels)

Description	Relative Density <i>D_r</i> (%)	SPT N value, N _{SPT}
Very Loose	0 – 15	0 - 4
Loose	15 – 35	4 - 10
Medium Dense	35 – 65	10 - 30
Dense	65 – 85	30 - 50
Very Dense	>85	>50


COHESIVE SOILS (Clays and Silts)

Term based on measurement	Undrained Shear Strength Classification, s _u (kPa)	
Extremely low	<10	
Very low	10 - 20	
Low	20 - 40	
Medium	40 - 75	
High	75 - 150	
Very high	150 - 300	
Extremely high	>300	

APPENDIX A9 – Site Map and Pictures from Site Works

APPENDIX B

Cone Penetration Measured Parameters and Geotechnical Derived Parameters

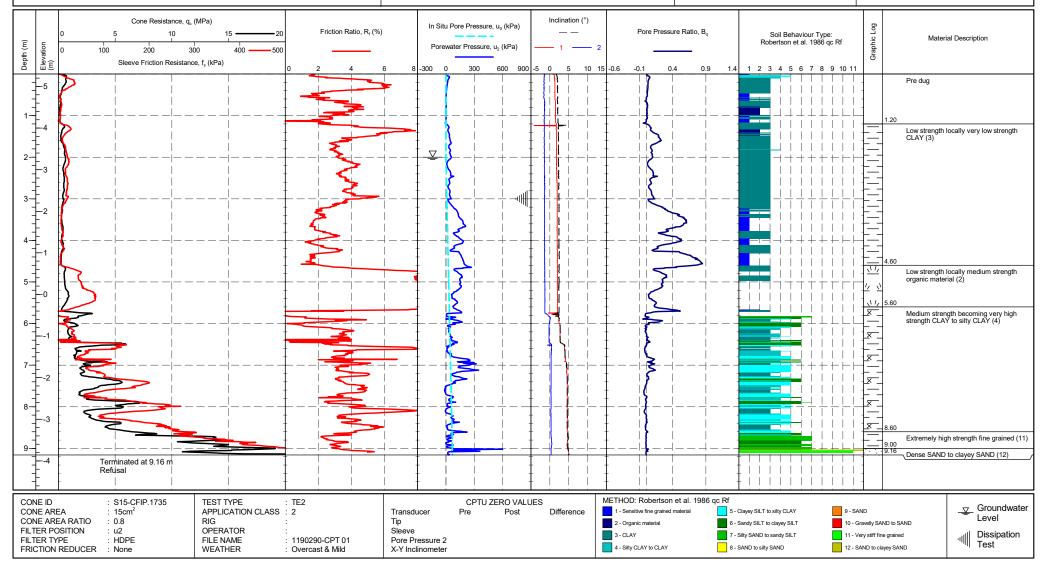
CPT 01

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING** : 325239.800 m **NORTHING** : 180759.500 m

ELEVATION : 5.300 m OD


CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on total pressure.

SHEET : 1 OF 1 **STATUS** : Final

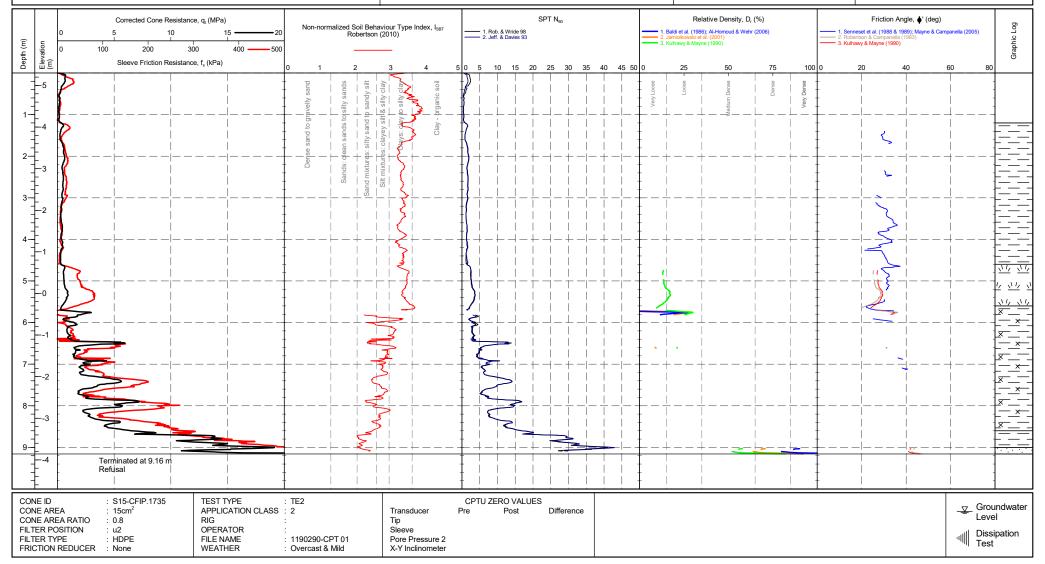
TEST DATE: 17/06/2019 PLOT DATE: 04/07/2019

CPT 01

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325239.800 m **NORTHING** : 180759.500 m


ELEVATION : 5.300 m OD

CHECKED BY

TERMINATION REASON: Refusal

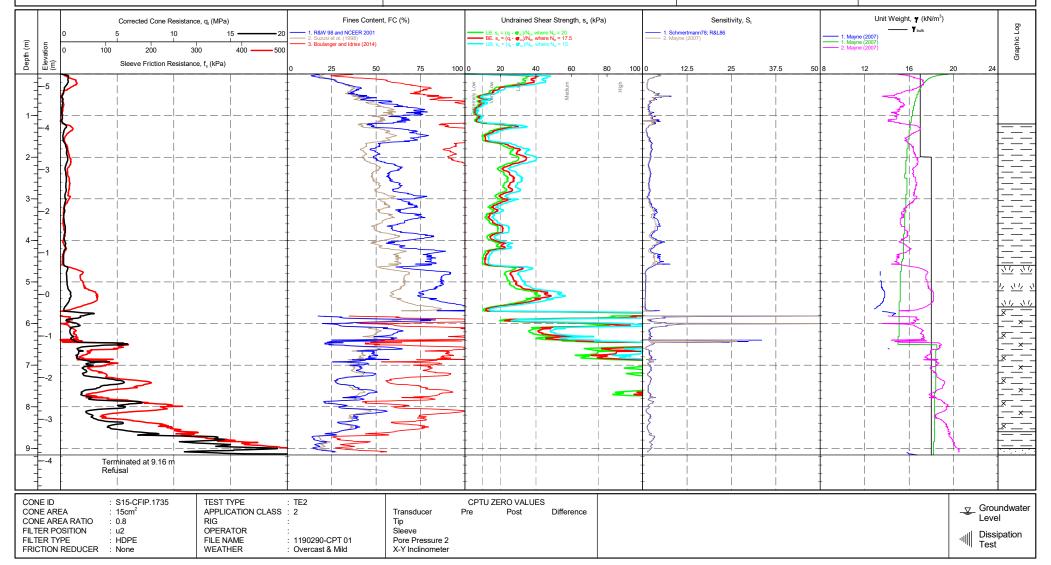
Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 17/06/2019 PLOT DATE: 04/07/2019

CPT 01

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway


LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325239.800 m **NORTHING** : 180759.500 m **ELEVATION** : 5.300 m OD

CHECKED BY

TERMINATION REASON: Refusal

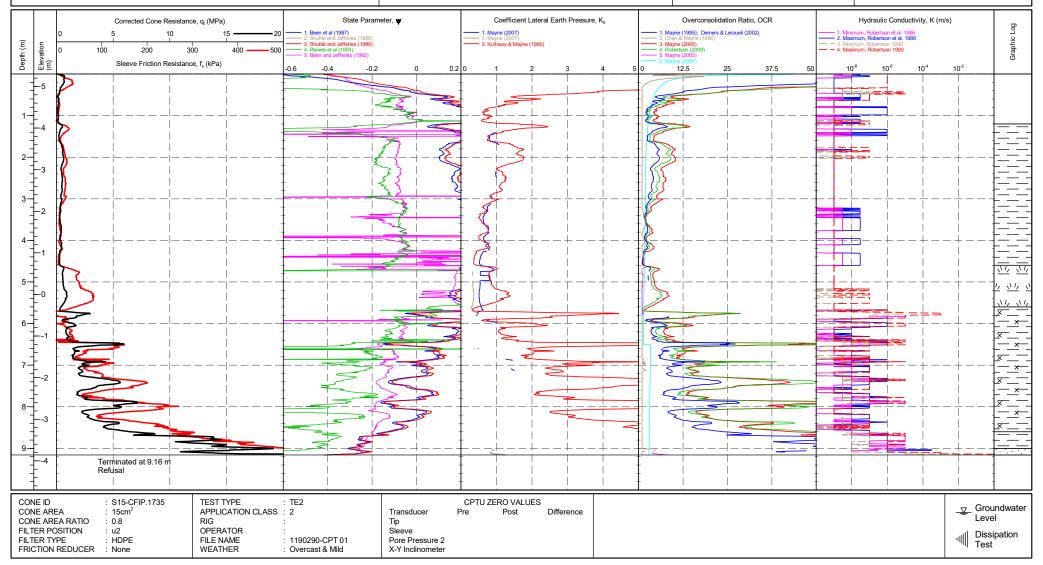
Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 17/06/2019 PLOT DATE: 04/07/2019

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325239.800 m **NORTHING** : 180759.500 m **ELEVATION** : 5.300 m OD


CHECKED BY

TERMINATION REASON: Refusal

Remark: SHEET : 1 OF 1 STATUS : Final Test refused on total pressure.

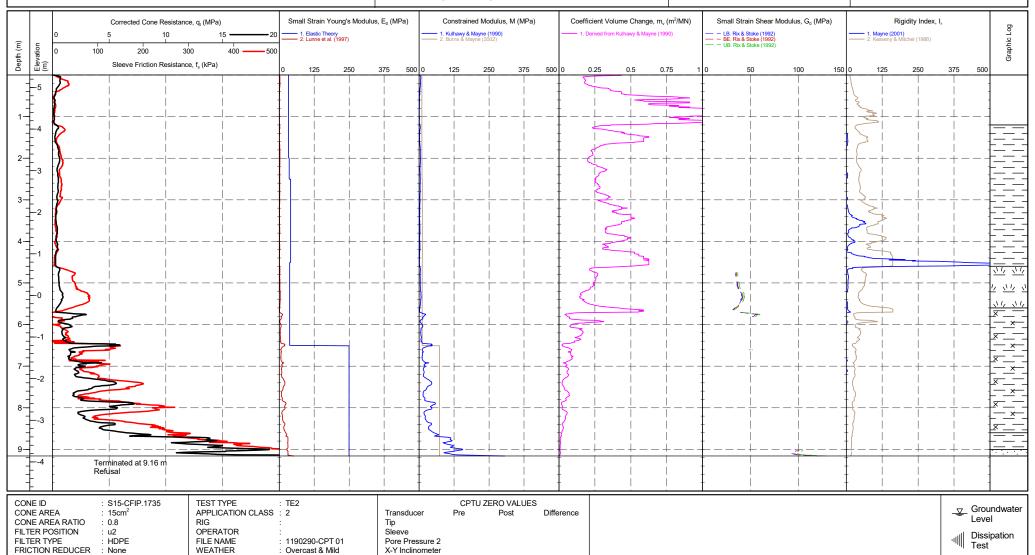
> TEST DATE : 17/06/2019 PLOT DATE: 04/07/2019

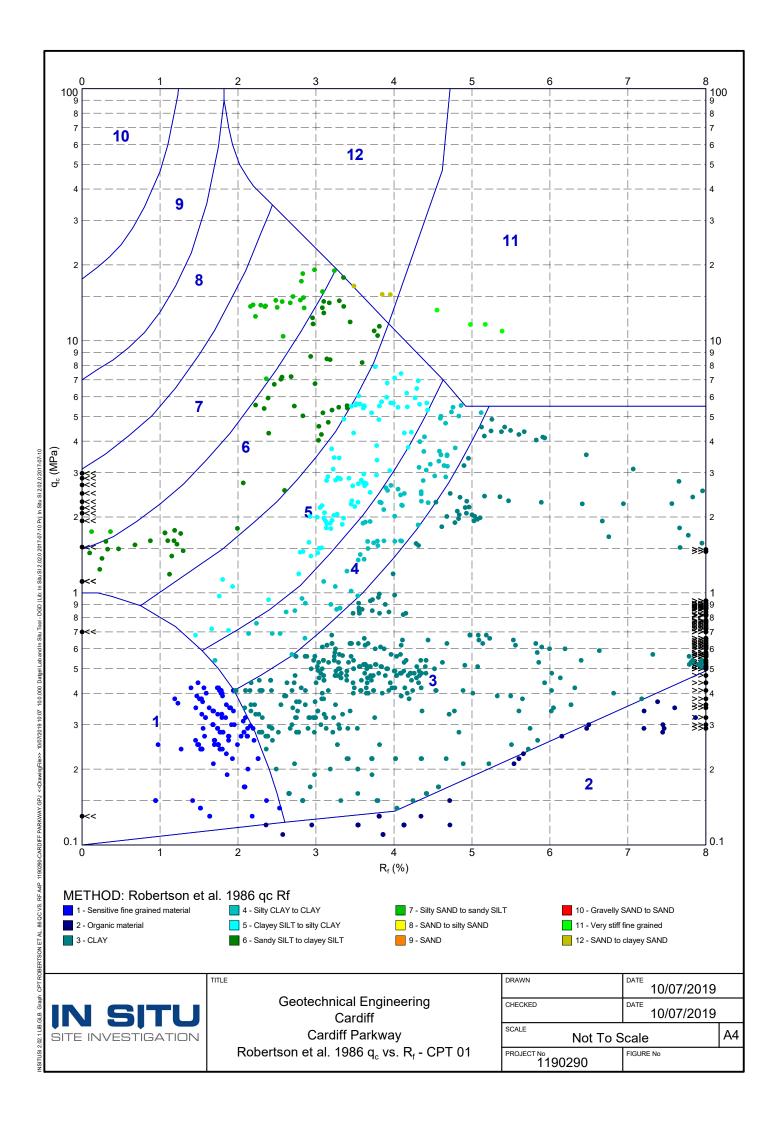
CPT 01

CPT 01

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway


LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325239.800 m **NORTHING** : 180759.500 m **ELEVATION** : 5.300 m OD


CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

TEST DATE: 17/06/2019 PLOT DATE: 04/07/2019

: 1 OF 1

Test ID

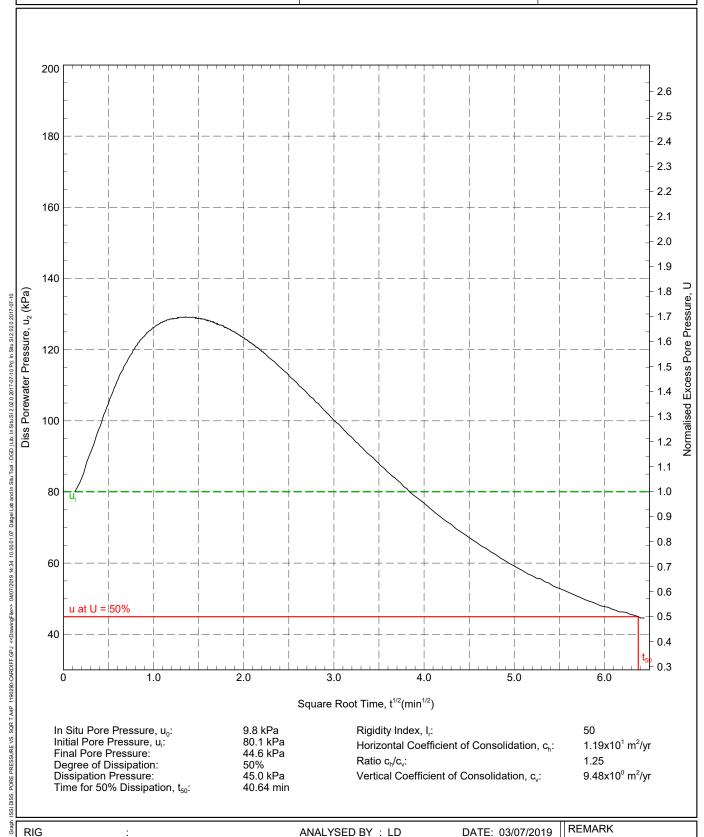
CPT 01 - 3.00 m SHEET

CLIENT **ENGINEER**

: Geotechnical Engineering

PROJECT LOCATION Cardiff PROJECT No. : 1190290

EASTING : 325239.8 m Cardiff Parkway NORTHING : 180759.5 m


COORD. SYS .:

AREA

ELEVATION : 5.30 m

: Cardiff

STATUS : Final DATE : 17/06/19

RIG **CONE TYPE** : S15-CFIP CONE ID : S15-CFIP.1735

: AG & CM

OPERATOR

CHECKED BY : LD APPROVED BY: DW DATE: 03/07/2019 DATE: 03/07/2019 DATE: 03/07/2019

REMARK Test OK.

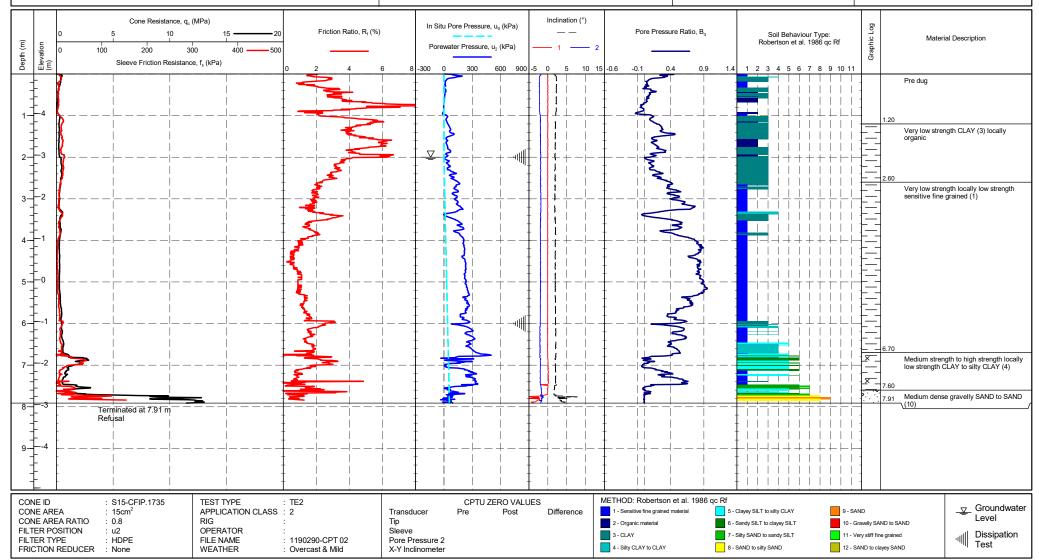
CPT 02

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING** : 325413.600 m **NORTHING** : 180803.000 m **ELEVATION** : 4.950 m OD

CHECKED BY


TERMINATION REASON: Refusal

Remark: SHEET Test refused on inclination.

STATUS : Final TEST DATE: 24/06/2019 PLOT DATE: 04/07/2019

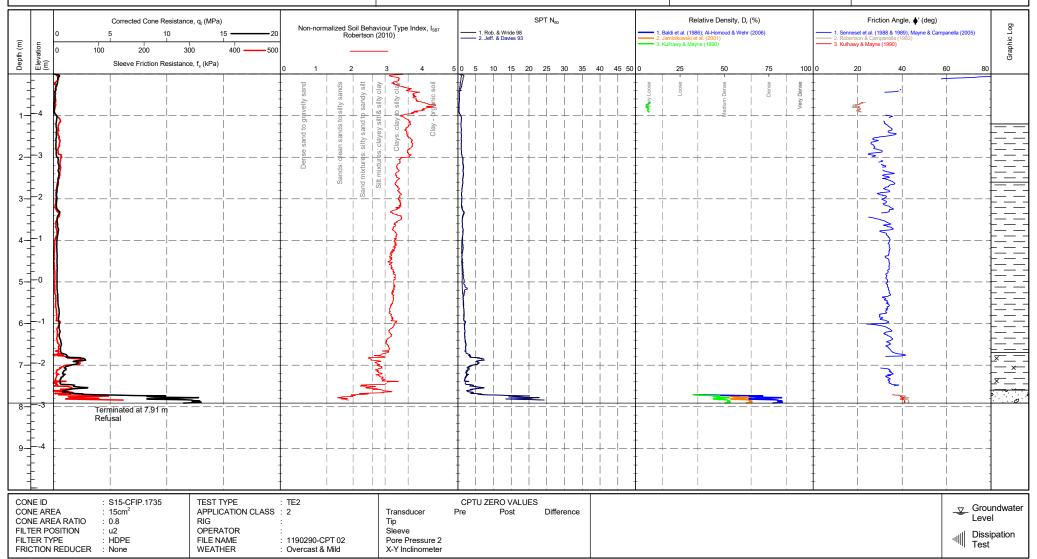
METHOD : ISO 22476-1:2012

: 1 OF 1

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325413.600 m **NORTHING** : 180803.000 m : 4.950 m OD **ELEVATION**


CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on inclination. SHEET : 1 OF 1 STATUS : Final

CPT 02

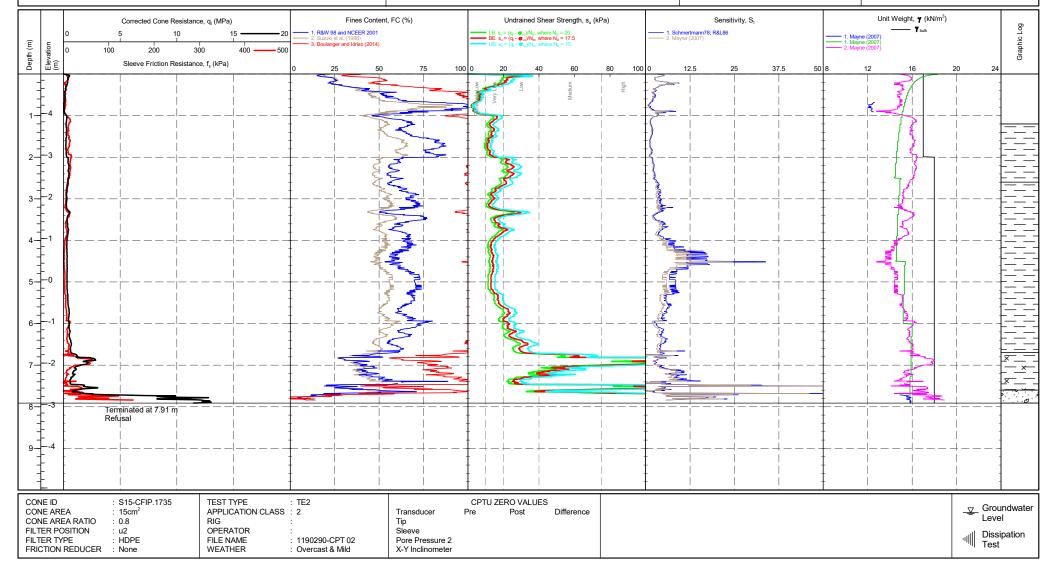
TEST DATE : 24/06/2019 PLOT DATE: 04/07/2019

CPT 02

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325413.600 m **NORTHING** : 180803.000 m


ELEVATION : 4.950 m OD

CHECKED BY

TERMINATION REASON: Refusal

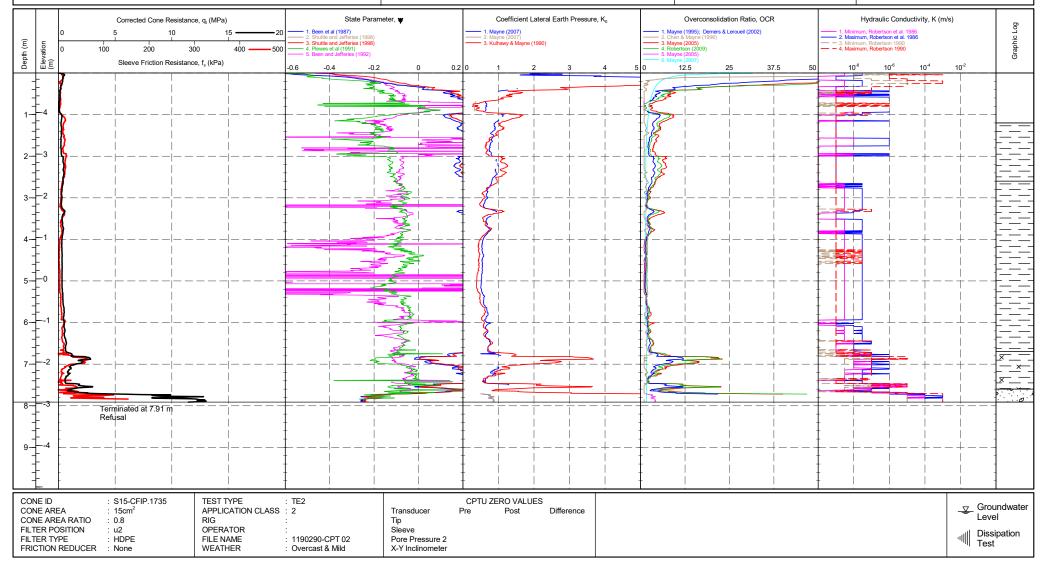
Remark: Test refused on inclination. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 24/06/2019 PLOT DATE: 04/07/2019

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325413.600 m **NORTHING** : 180803.000 m : 4.950 m OD **ELEVATION**


CHECKED BY

TERMINATION REASON: Refusal

Remark: SHEET : 1 OF 1 STATUS : Final Test refused on inclination.

TEST DATE : 24/06/2019 PLOT DATE: 04/07/2019

CPT 02

CPT 02

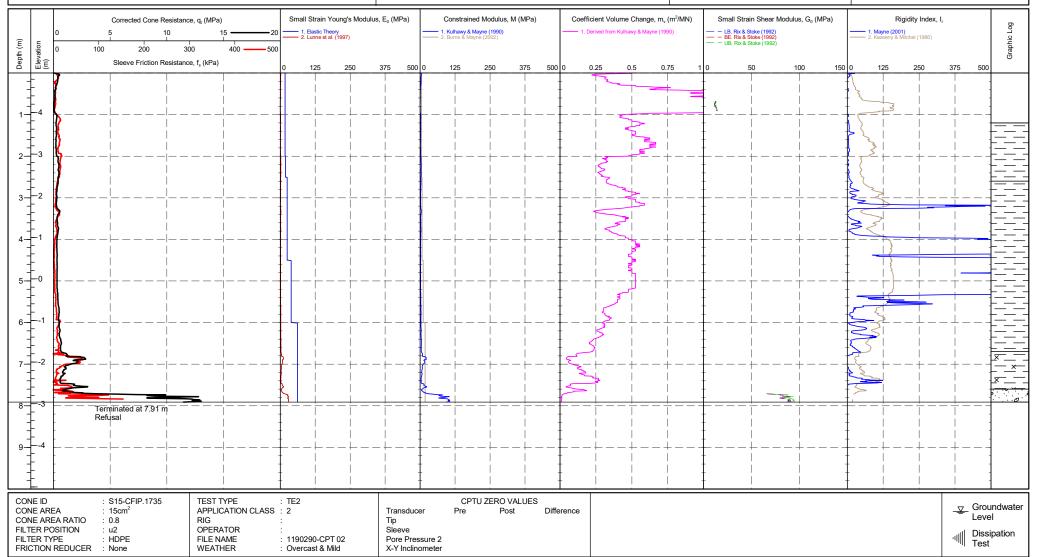
CLIENT : Geotechnical Engineering

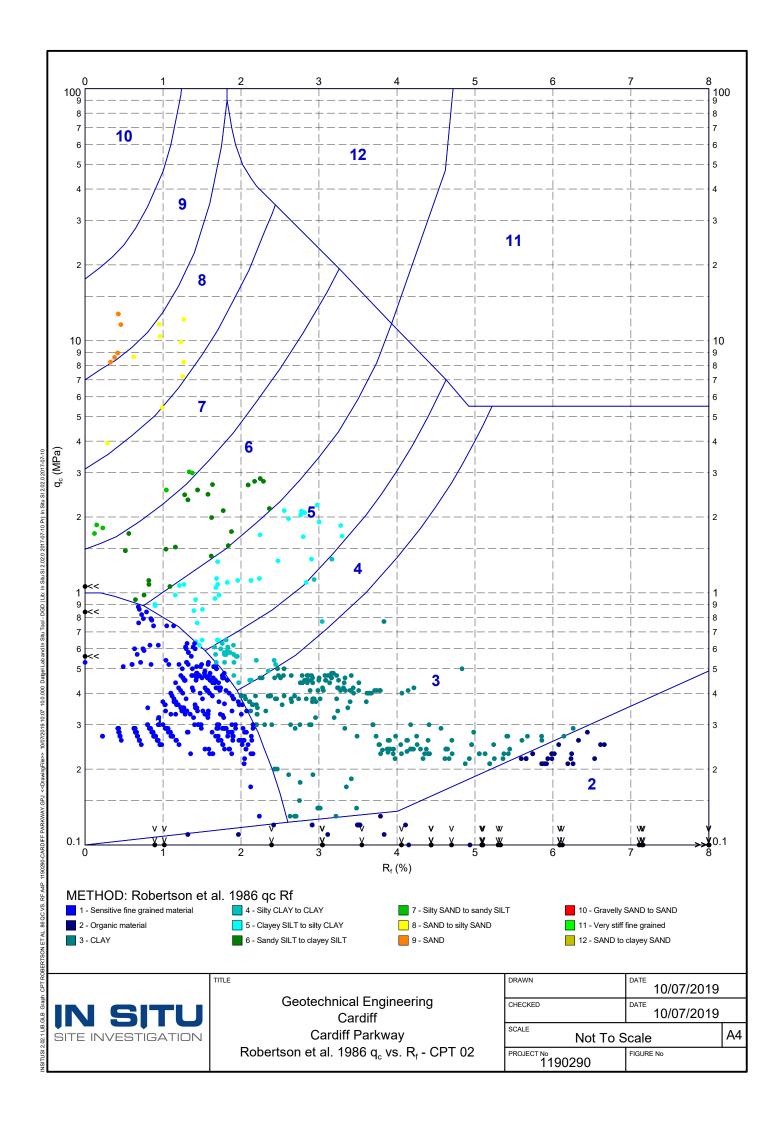
PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325413.600 m **NORTHING** : 180803.000 m

: 4.950 m OD **ELEVATION**

CHECKED BY


TERMINATION REASON: Refusal


Remark: SHEET STATUS Test refused on inclination.

: Final TEST DATE : 24/06/2019 PLOT DATE: 04/07/2019

METHOD : ISO 22476-1:2012

: 1 OF 1

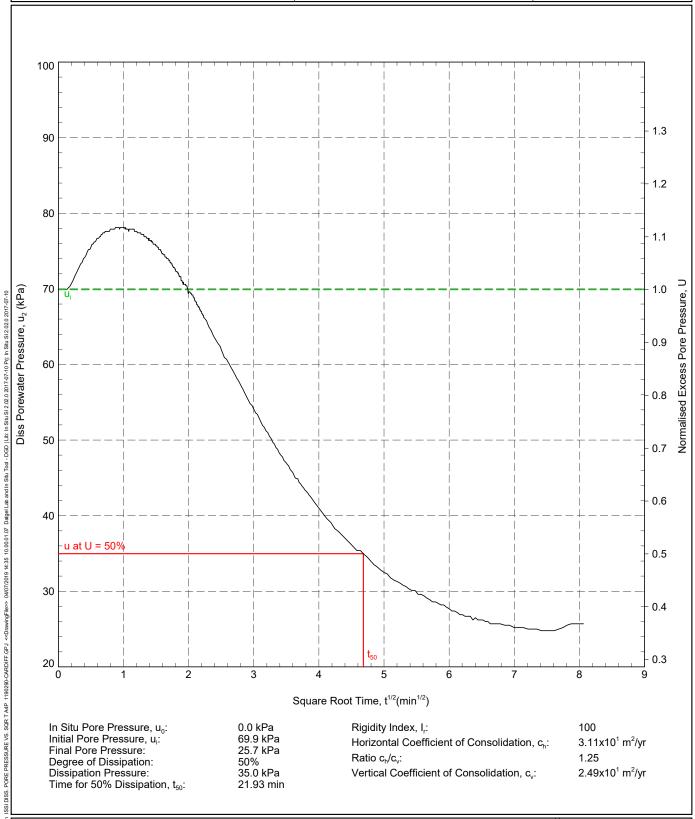
Test ID

CPT 02 - 2.00 m

CLIENT : Geotechnical Engineering

ENGINEER

PROJECT LOCATION


Cardiff Parkway

Cardiff PROJECT No.: 1190290 **AREA** : Cardiff **EASTING** : 325413.6 m : 180803.0 m

NORTHING COORD. SYS .:

ELEVATION: 4.95 m

SHEET : 1 OF 1 **STATUS** : Final DATE : 24/06/19

RIG : S15-CFIP **CONE TYPE** CONE ID

OPERATOR

: S15-CFIP.1735 : AG & CM

ANALYSED BY: LD CHECKED BY : LD

APPROVED BY: DW

DATE: 03/07/2019 DATE: 03/07/2019 DATE: 03/07/2019

REMARK Test OK.

Test ID

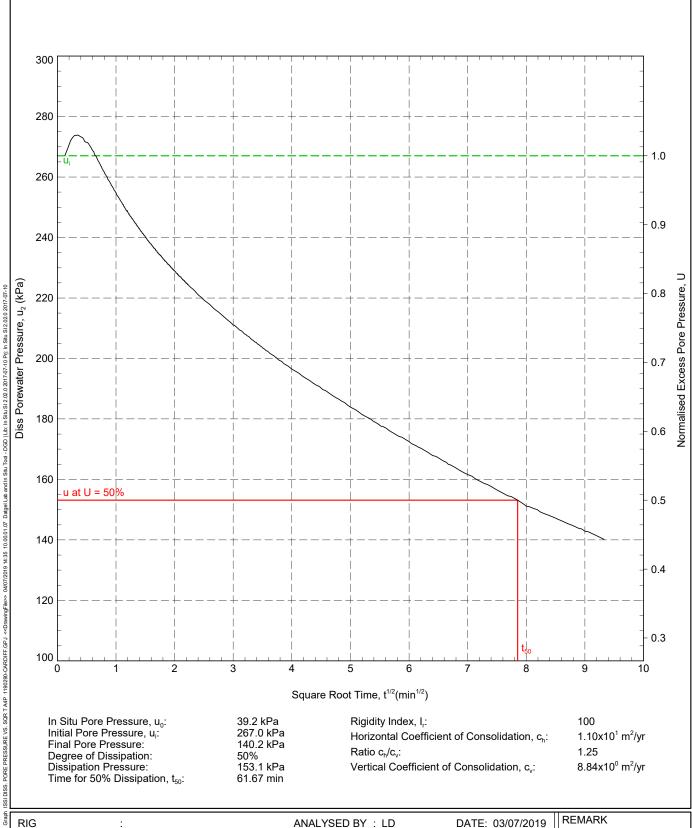
CPT 02 - 6.00 m

AREA CLIENT : Geotechnical Engineering

ENGINEER

PROJECT LOCATION

Cardiff Parkway


Cardiff PROJECT No.: 1190290

: Cardiff **EASTING** : 325413.6 m NORTHING : 180803.0 m

COORD. SYS .:

ELEVATION: 4.95 m

SHEET : 1 OF 1 **STATUS** : Final DATE : 24/06/19

RIG **CONE TYPE** : S15-CFIP CONE ID : S15-CFIP.1735

: AG & CM

OPERATOR

CHECKED BY : LD APPROVED BY: DW DATE: 03/07/2019 DATE: 03/07/2019 DATE: 03/07/2019

REMARK Test OK.

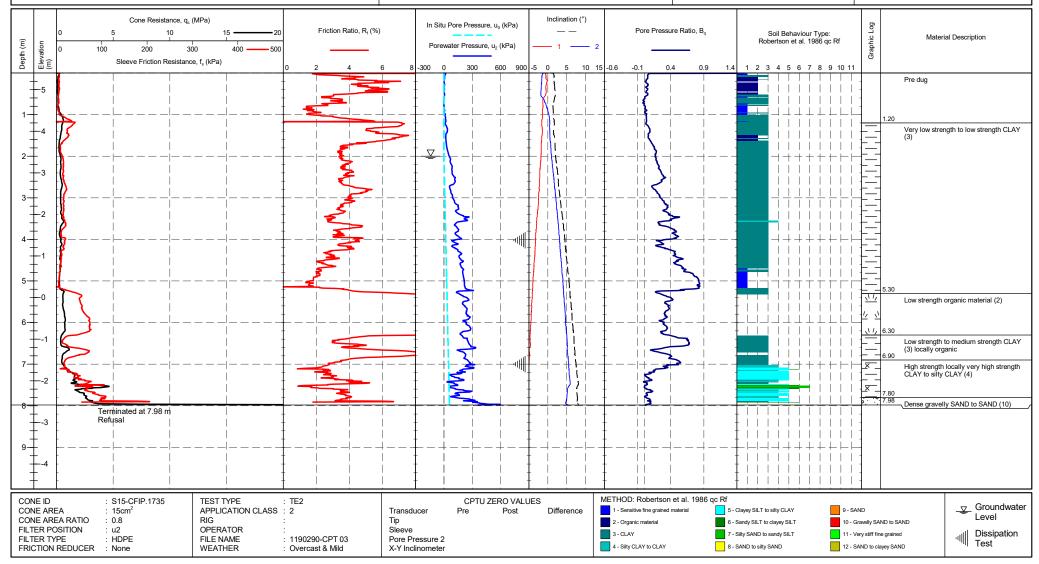
CPT 03

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING** : 325294.200 m **NORTHING** : 180730.200 m

ELEVATION : 5.400 m OD


CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on total pressure.

SHEET : 1 OF 1 **STATUS** : Final

TEST DATE: 21/06/2019 PLOT DATE: 04/07/2019

CLIENT : Geotechnical Engineering

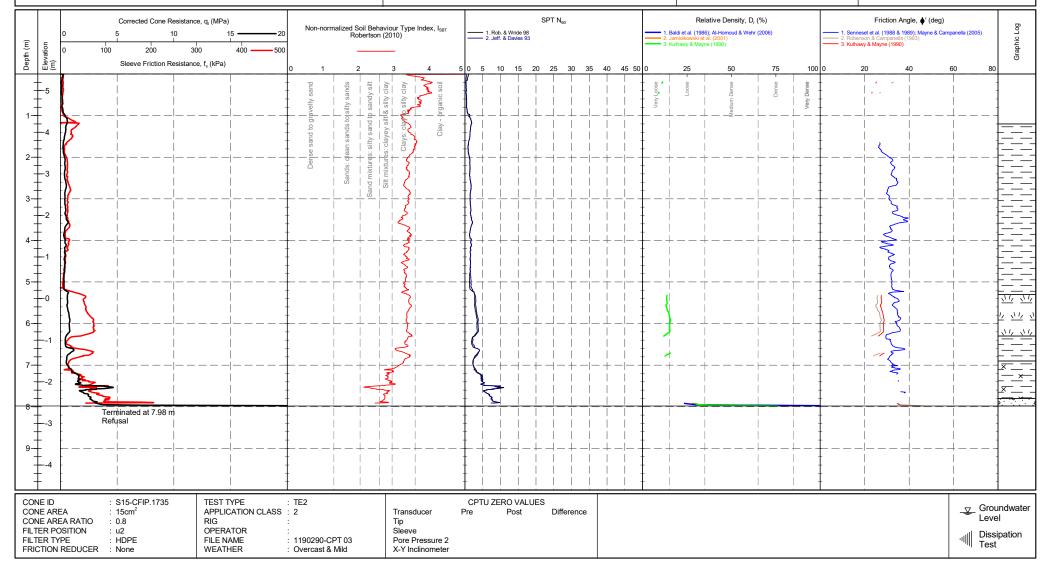
PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325294.200 m **NORTHING** : 180730.200 m

ELEVATION : 5.400 m OD

CHECKED BY

TERMINATION REASON: Refusal


Remark:

Test refused on total pressure.

SHEET : 1 OF 1 STATUS : Final

CPT 03

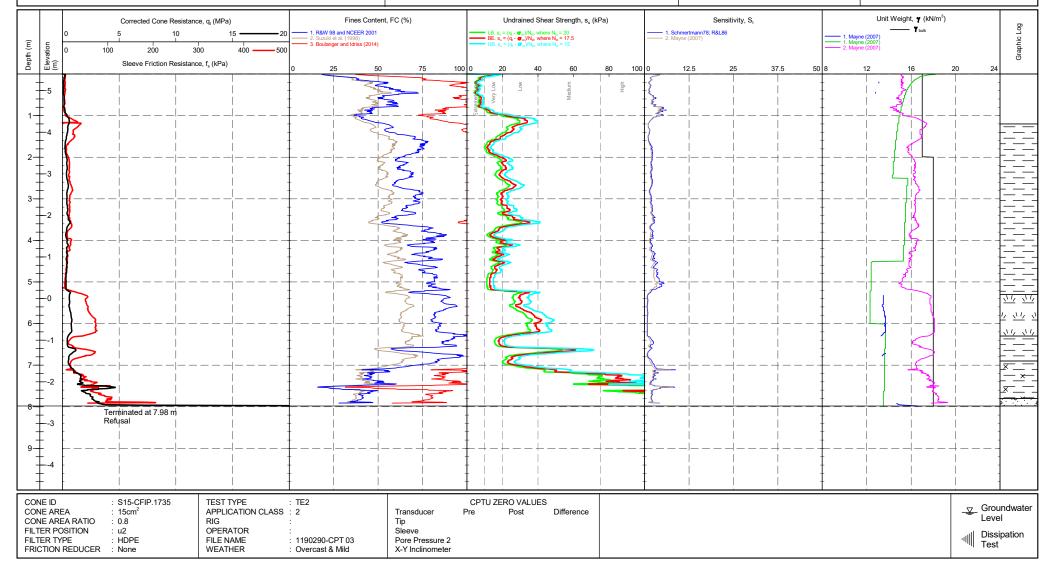
TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

CPT 03

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325294.200 m **NORTHING** : 180730.200 m


ELEVATION : 5.400 m OD

CHECKED BY

TERMINATION REASON: Refusal

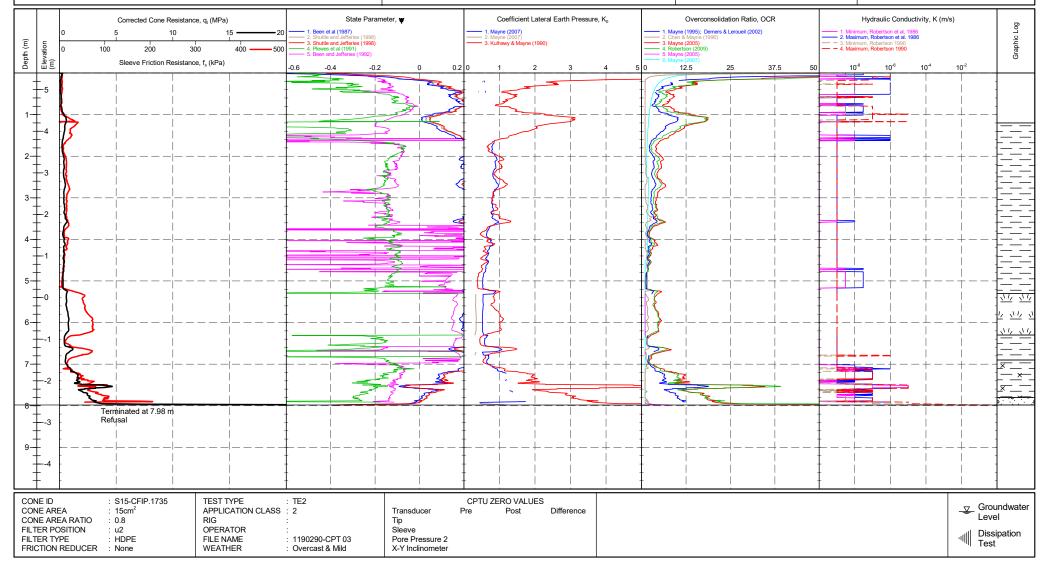
Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

CPT 03

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway


LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325294.200 m **NORTHING** : 180730.200 m

: 5.400 m OD **ELEVATION** CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

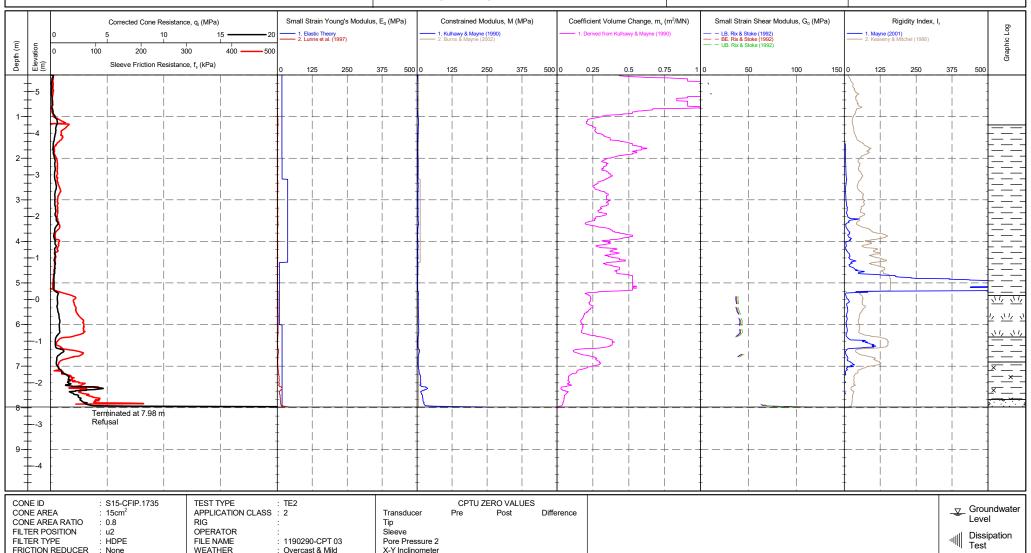
LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325294.200 m **NORTHING** : 180730.200 m : 5.400 m OD

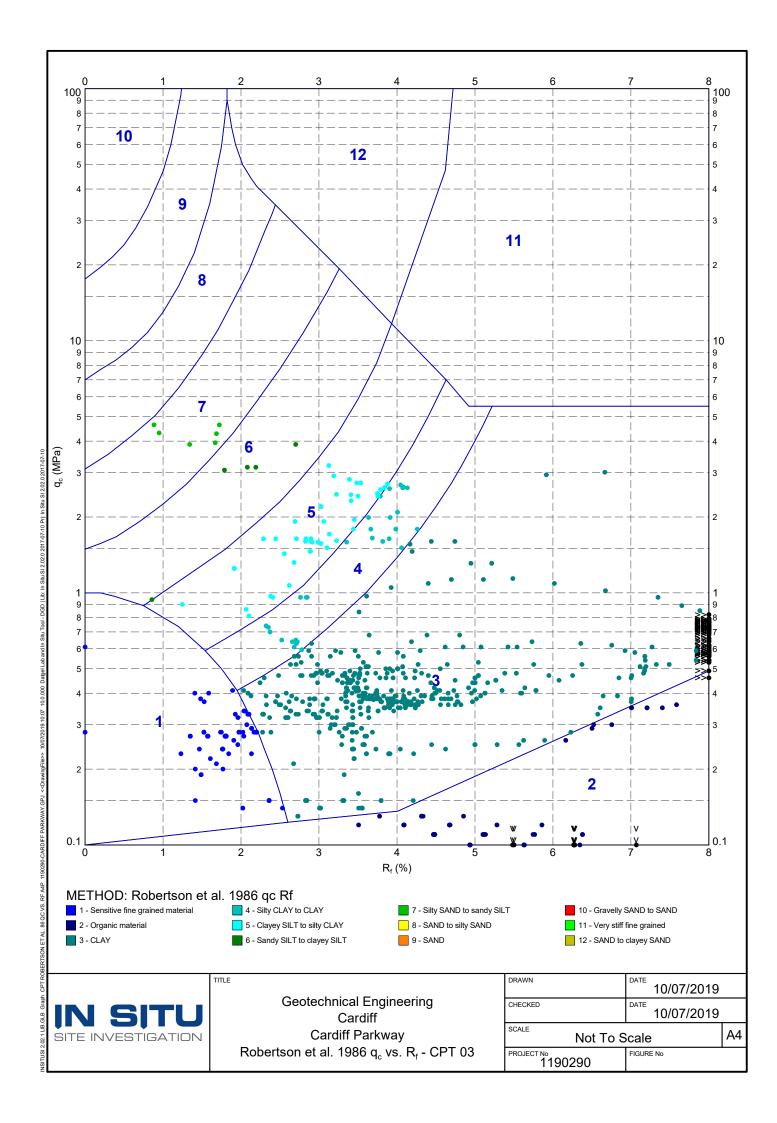
ELEVATION CHECKED BY

TERMINATION REASON: Refusal

Remark:

Test refused on total pressure.


STATUS : Final TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019


CPT 03

SHEET

METHOD : ISO 22476-1:2012

: 1 OF 1

Test ID

CPT 03 - 4.02 m

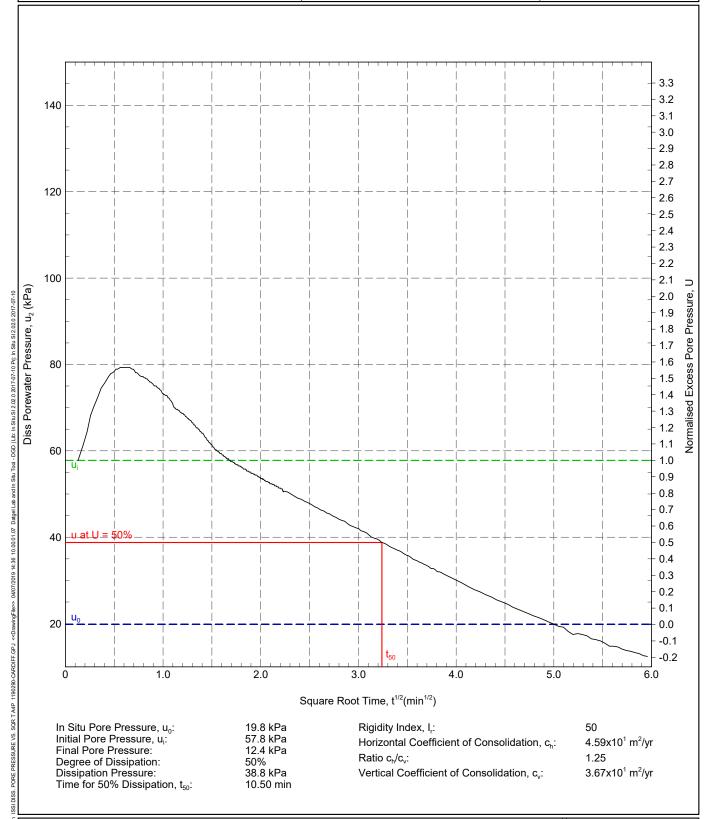
SHEET : 1 OF 1

> **STATUS** : Final DATE : 21/06/19

CLIENT Geotechnical Engineering

ENGINEER

PROJECT Cardiff Parkway LOCATION Cardiff PROJECT No.: 1190290


: 325294.2 m **EASTING** : 180730.2 m

AREA

NORTHING COORD. SYS .:

: Cardiff

ELEVATION : 5.40 m

RIG **CONE TYPE** : S15-CFIP CONE ID : S15-CFIP.1735

: AG & CM

OPERATOR

CHECKED BY : LD APPROVED BY: DW

ANALYSED BY: LD

DATE: 03/07/2019 DATE: 03/07/2019 DATE: 03/07/2019

REMARK Test OK.

Test ID

CPT 03 - 7.00 m

CLIENT : Geotechnical Engineering

ENGINEER

RIG

CONE TYPE

OPERATOR

CONE ID

: S15-CFIP

: AG & CM

: S15-CFIP.1735

: Cardiff Parkway

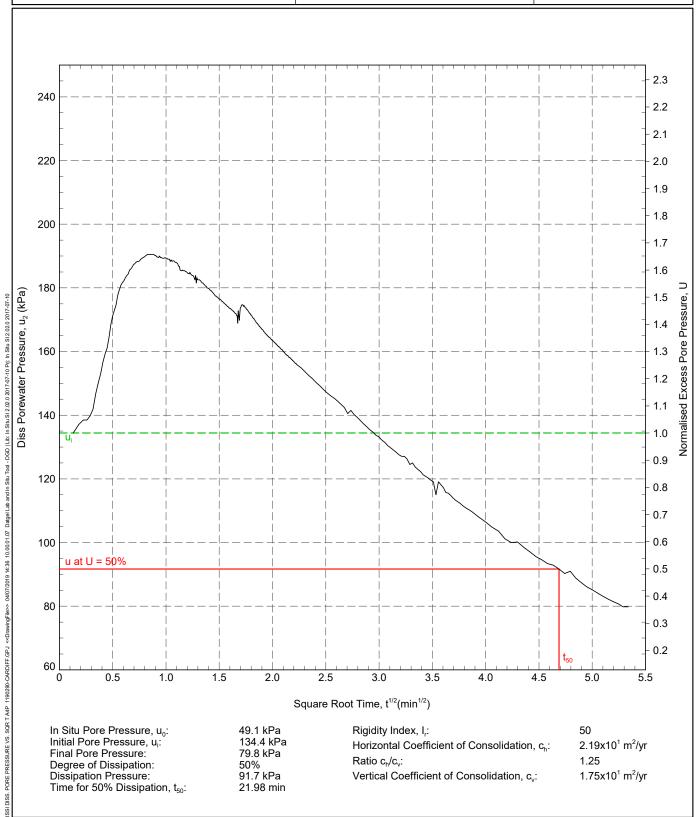
PROJECT : Cardiff PLOCATION : Cardiff PROJECT No. : 1190290

AREA : Cardiff EASTING : 325294.2 m

NORTHING: 180730.2 m COORD. SYS.:

ELEVATION : 5.40 m

SHEET : 1 OF 1 STATUS : Final DATE : 21/06/19


REMARK

Test OK.

DATE: 03/07/2019

DATE: 03/07/2019

DATE: 03/07/2019

ANALYSED BY: LD

CHECKED BY : LD

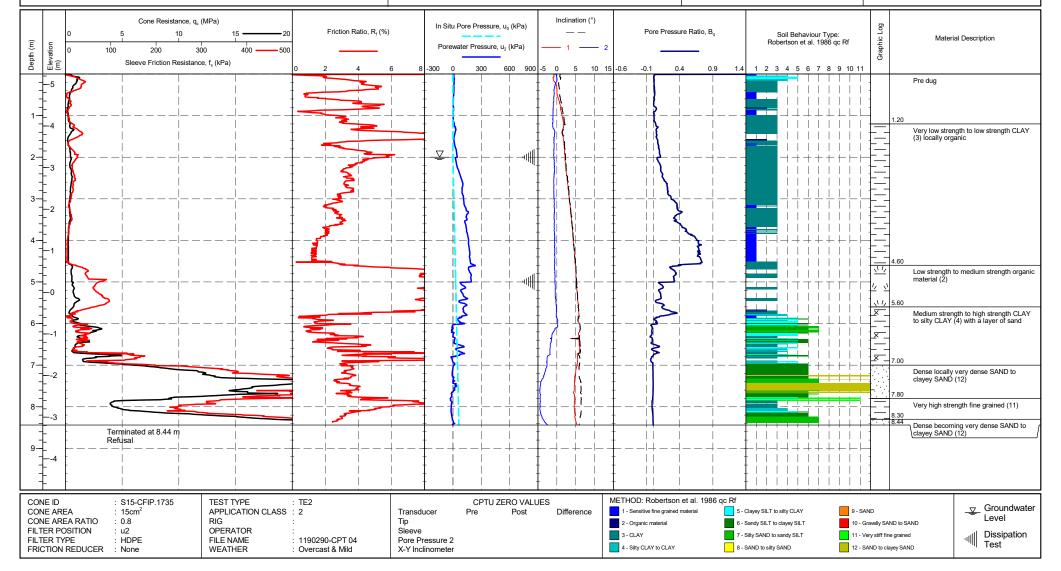
APPROVED BY: DW

CPT 04

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING** : 325195.400 m **NORTHING** : 180664.200 m **ELEVATION** : 5.250 m OD


CHECKED BY

TERMINATION REASON: Refusal

Remark: SHEET : 1 OF 1 : Final **STATUS** Test refused on total pressure.

TEST DATE: 21/06/2019 PLOT DATE: 04/07/2019

: ISO 22476-1:2012

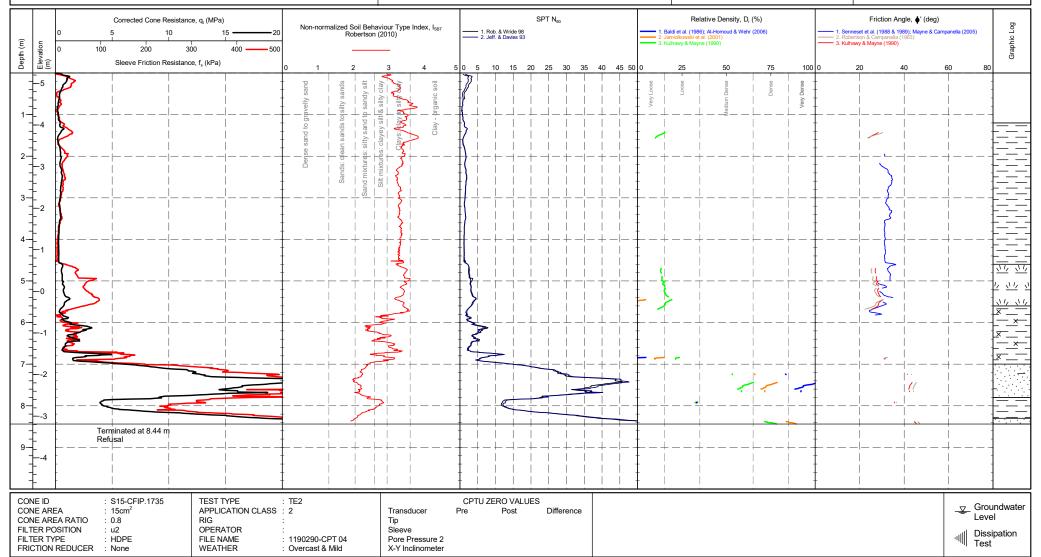
CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325195.400 m **NORTHING** : 180664.200 m

ELEVATION : 5.250 m OD CHECKED BY

TERMINATION REASON: Refusal


Remark:

Test refused on total pressure.

SHEET : 1 OF 1 STATUS : Final

CPT 04

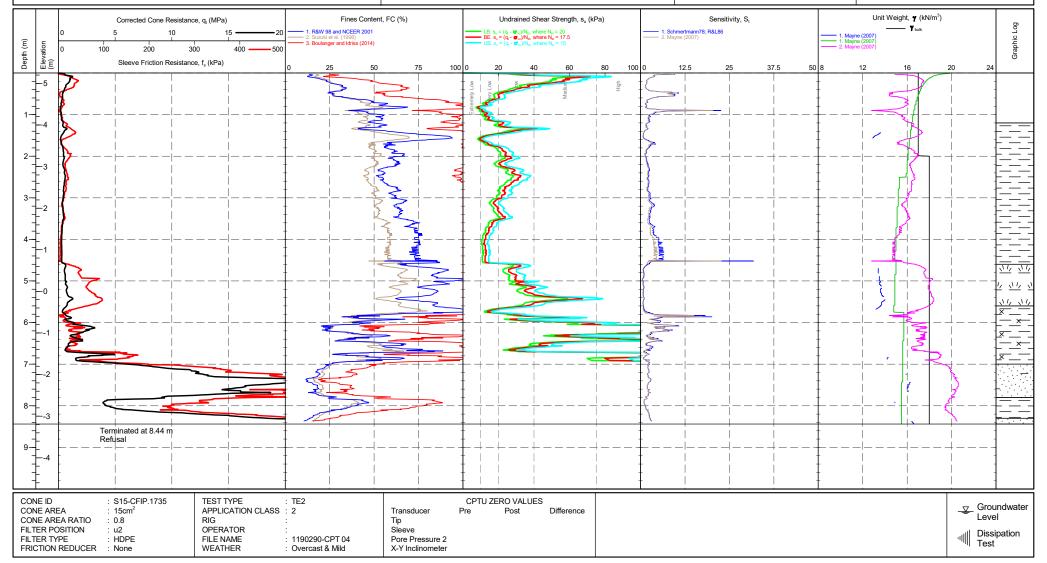
TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

CPT 04

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325195.400 m **NORTHING** : 180664.200 m


ELEVATION : 5.250 m OD

CHECKED BY

TERMINATION REASON: Refusal

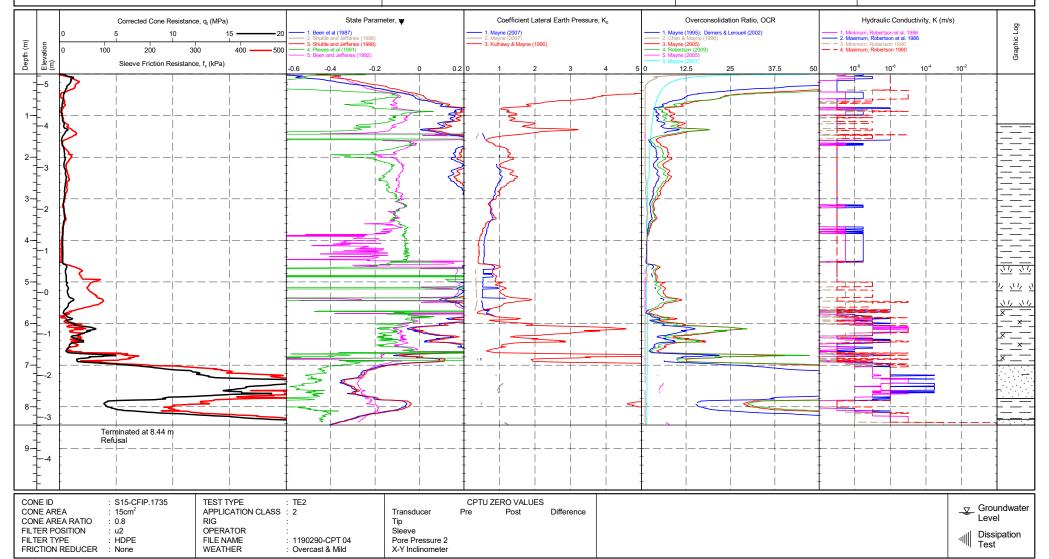
Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

CPT 04

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway


LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325195.400 m **NORTHING** : 180664.200 m : 5.250 m OD **ELEVATION**

CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

CPT 04

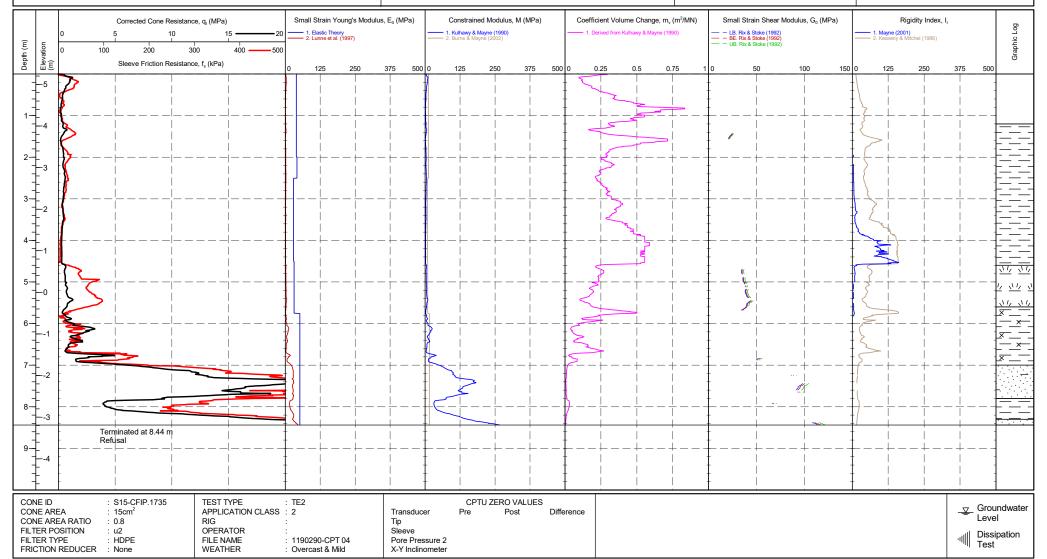
CLIENT : Geotechnical Engineering

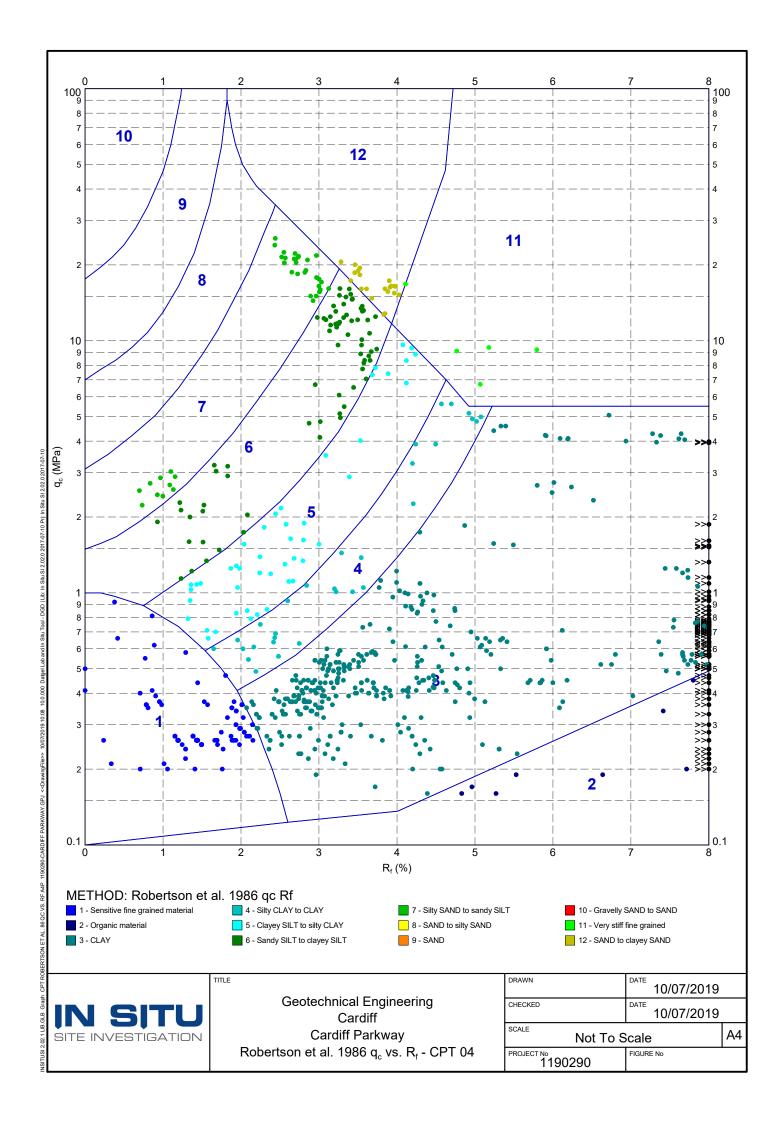
PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325195.400 m **NORTHING** : 180664.200 m **ELEVATION** : 5.250 m OD

CHECKED BY

TERMINATION REASON: Refusal


Remark: SHEET Test refused on total pressure.


STATUS : Final TEST DATE : 21/06/2019

PLOT DATE: 04/07/2019

METHOD : ISO 22476-1:2012

: 1 OF 1

: Final

: 21/06/19

CLIENT

ENGINEER

PROJECT

: Geotechnical Engineering

Cardiff Parkway

Test ID

CPT 04 - 2.00 m

STATUS

DATE

SHEET : 1 OF 1

NORTHING : 180664.2 m

: Cardiff

: 325195.4 m

AREA

EASTING

LOCATION COORD. SYS .: Cardiff PROJECT No. : 1190290 ELEVATION : 5.25 m

100 2.1 2.0 90 1.9 1.8 1.7 80 1.6 1.5 70 Diss Porewater Pressure, u₂ (kPa) 1.4 Pressure, 1.3 60 Pore 1.2 Excess 1.1 50 1.0 0.9 40 8.0 0.7 30 0.6 0.5 20 0.4 0.3 10 3 8 Square Root Time, t1/2(min1/2) 0.0 kPa Rigidity Index, I,: In Situ Pore Pressure, u₀: 50 Initial Pore Pressure, u.: 47.3 kPa Ratio c_h/c_v: 1.25 Final Pore Pressure: 23.8 kPa 7.70x10⁰ m²/yr Vertical Coefficient of Consolidation, c,: Degree of Dissipation: 50% Dissipation Pressure: Time for 50% Dissipation, t_{50} : 50.0 kPa 13.87 min

RIG : S15-CFIP **CONE TYPE** CONE ID : S15-CFIP.1735

: AG & CM

OPERATOR

ANALYSED BY: LD DATE: 03/07/2019 CHECKED BY : LD DATE: 03/07/2019 DATE: 03/07/2019 APPROVED BY: DW

REMARK Test OK.

: 21/06/19

CLIENT

ENGINEER

PROJECT

LOCATION

Geotechnical Engineering

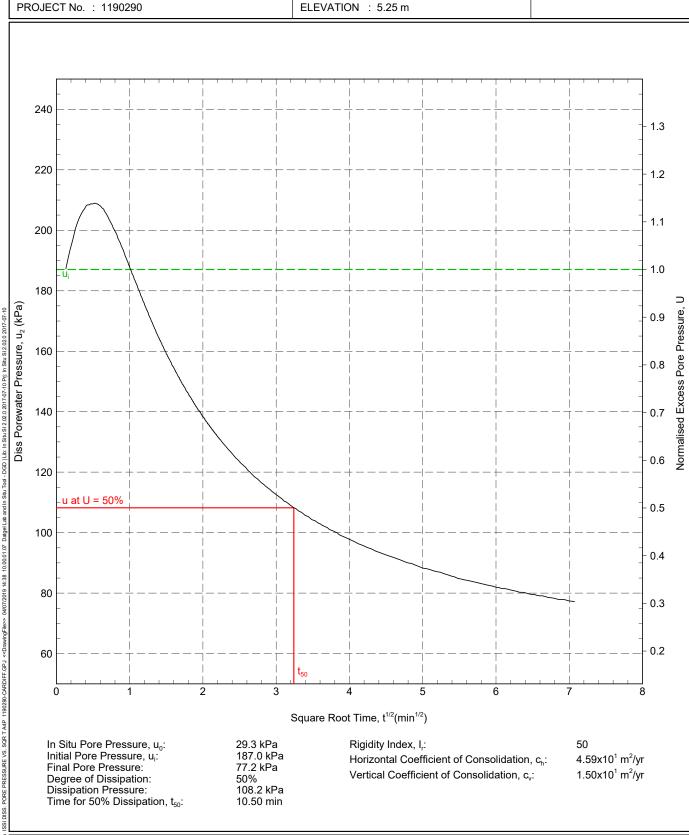
Cardiff Parkway

Cardiff

Test ID

CPT 04 - 4.99 m

DATE


SHEET : 1 OF 1 **STATUS** : Final

EASTING NORTHING : 180664.2 m COORD. SYS .:

AREA

ELEVATION : 5.25 m

: Cardiff : 325195.4 m

RIG **CONE TYPE** : S15-CFIP CONE ID : S15-CFIP.1735

: AG & CM

OPERATOR

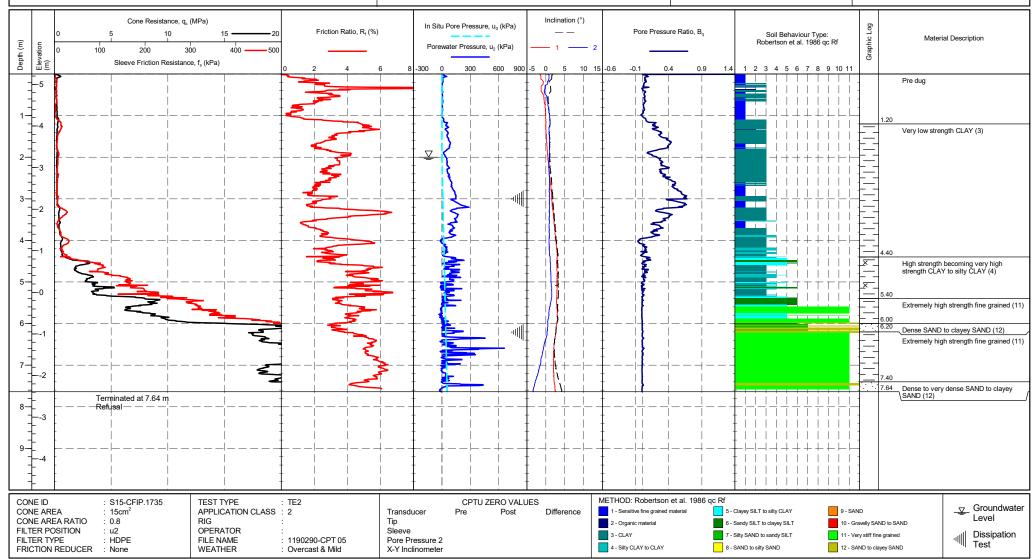
ANALYSED BY: LD DATE: 03/07/2019 CHECKED BY : LD DATE: 03/07/2019 DATE: 03/07/2019 APPROVED BY: DW

REMARK Test OK.

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING** : 325097.400 m **NORTHING** : 180591.800 m **ELEVATION** : 5.250 m OD


CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on total pressure. SHEET : 1 OF 1 **STATUS** : Final

CPT 05

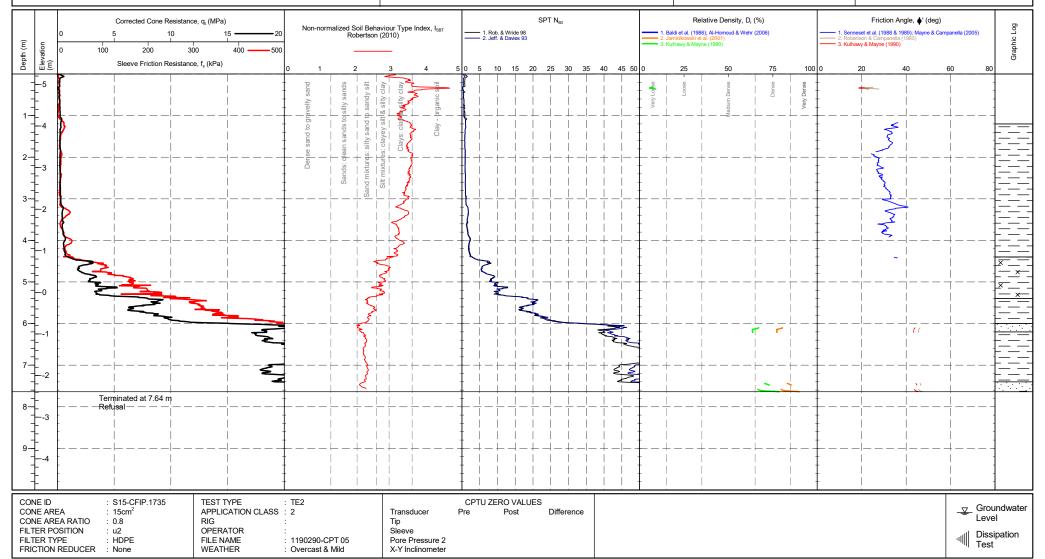
TEST DATE: 21/06/2019 PLOT DATE: 04/07/2019

CPT 05

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325097.400 m **NORTHING** : 180591.800 m


ELEVATION : 5.250 m OD

CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

CPT 05

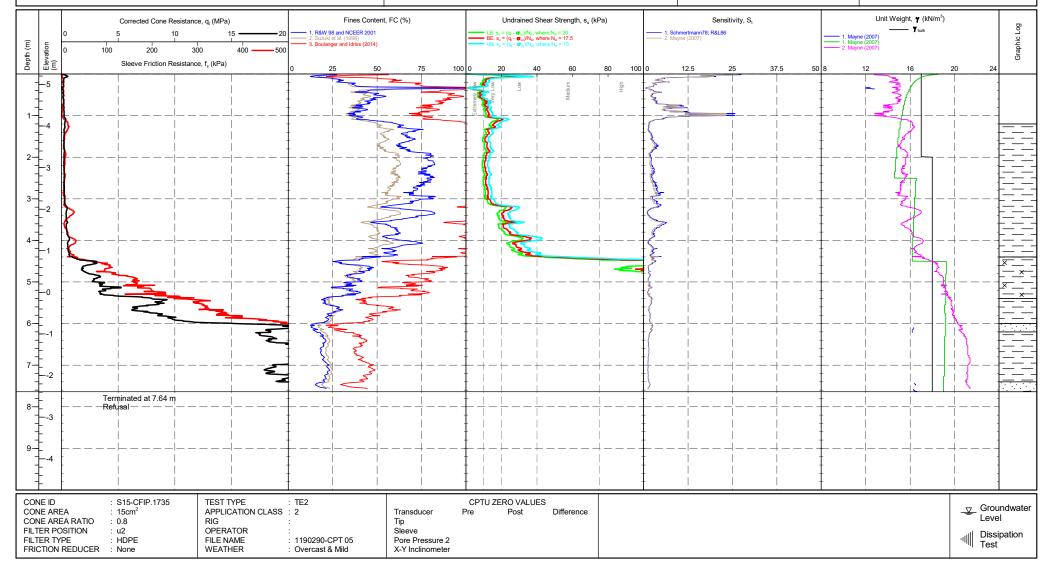
CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325097.400 m **NORTHING** : 180591.800 m

ELEVATION : 5.250 m OD

CHECKED BY


TERMINATION REASON: Refusal

Remark: SHEET STATUS : Final Test refused on total pressure.

TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

METHOD : ISO 22476-1:2012

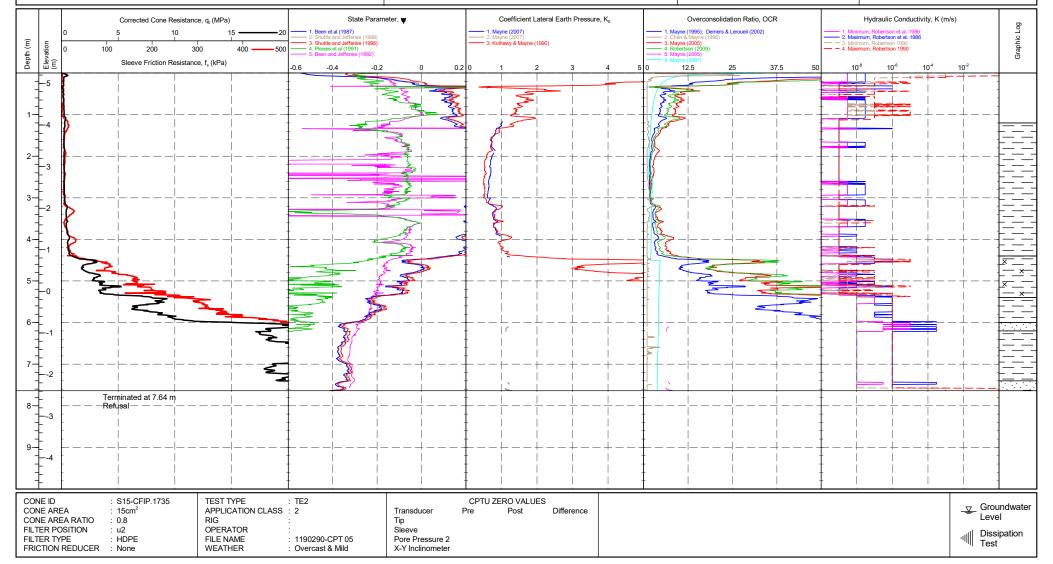
: 1 OF 1

CPT 05

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325097.400 m **NORTHING** : 180591.800 m


: 5.250 m OD **ELEVATION**

CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

CPT 05

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290

FRICTION REDUCER : None

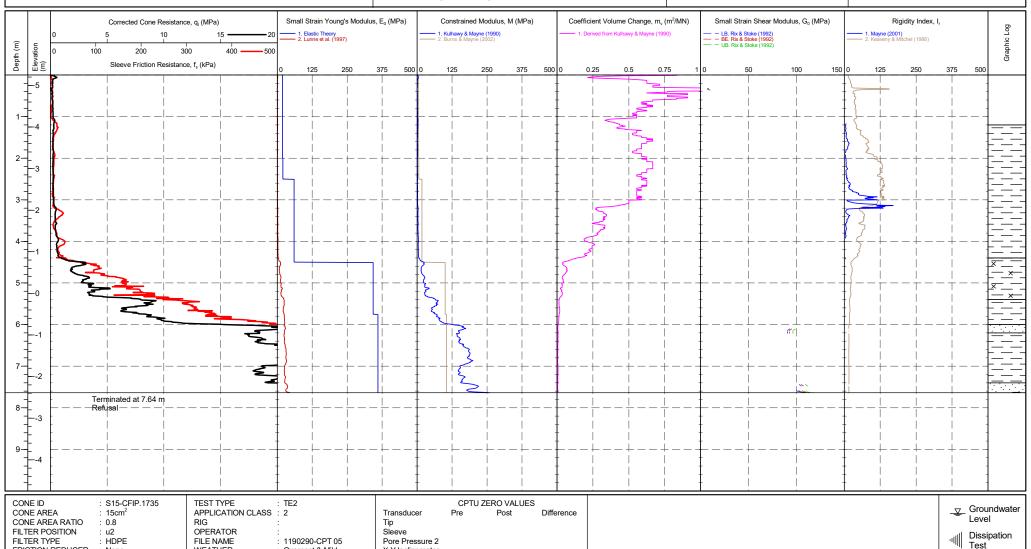
WEATHER

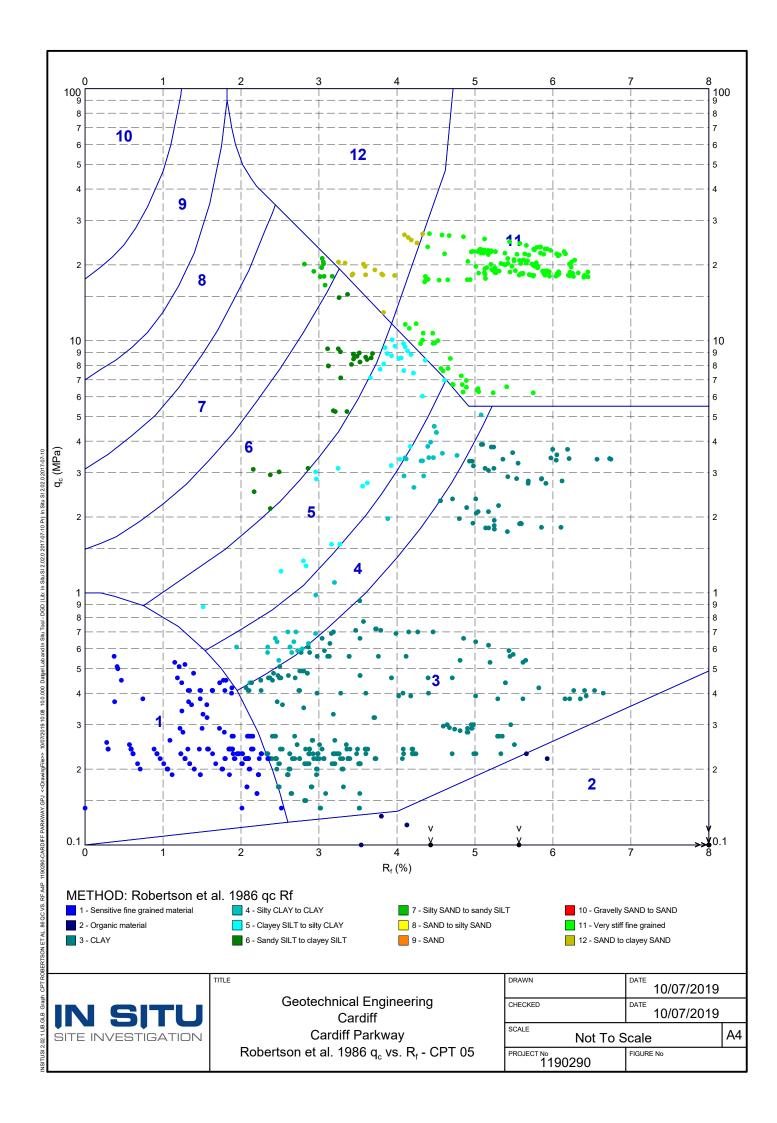
: Overcast & Mild

X-Y Inclinometer

EASTING : 325097.400 m **NORTHING** : 180591.800 m **ELEVATION** : 5.250 m OD

CHECKED BY


TERMINATION REASON: Refusal


Remark: SHEET STATUS Test refused on total pressure.

: Final TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

METHOD : ISO 22476-1:2012

: 1 OF 1

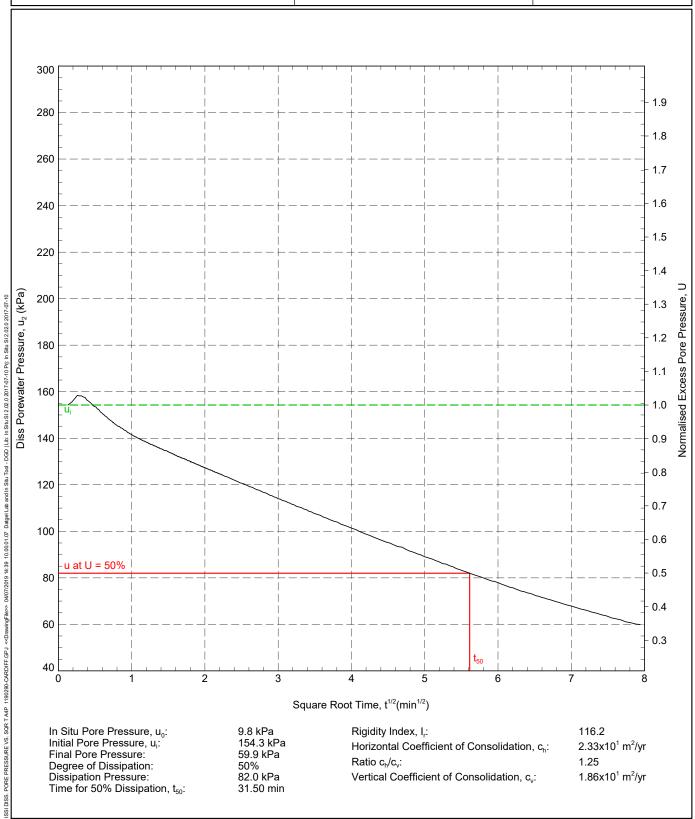
Test ID

CPT 05 - 3.00 m

CLIENT : Geotechnical Engineering

ENGINEER

: Cardiff Parkway


PROJECT : Cardiff PLOCATION : Cardiff PROJECT No. : 1190290

AREA : Cardiff EASTING : 325097.4 m NORTHING : 180591.8 m

COORD. SYS.:

ELEVATION : 5.25 m

SHEET : 1 OF 1 STATUS : Final DATE : 21/06/19

RIG : CONE TYPE : \$15-CFIP CONE ID : \$15-CFIP.1735

OPERATOR : AG & CM

ANALYSED BY : LD DATE: 03/07/2019 CHECKED BY : LD DATE: 03/07/2019

APPROVED BY : DW DATE: 03/07/2019

REMARK Test OK.

Test ID

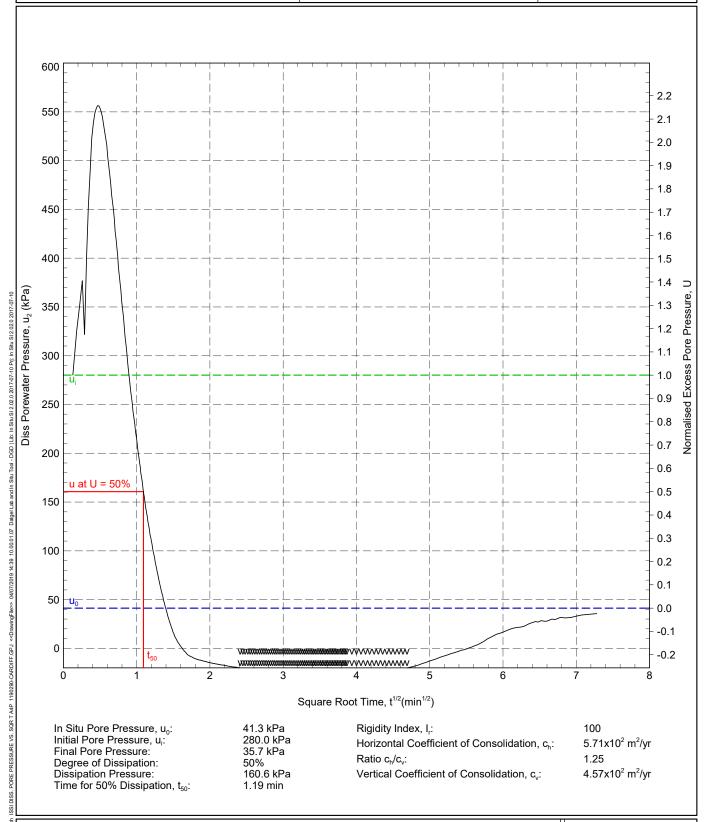
CPT 05 - 6.21 m

CLIENT **ENGINEER**

: Geotechnical Engineering

PROJECT LOCATION

Cardiff Parkway


Cardiff PROJECT No.: 1190290 **AREA** : Cardiff **EASTING** : 325097.4 m

NORTHING : 180591.8 m

COORD. SYS .:

ELEVATION : 5.25 m

SHEET : 1 OF 1 **STATUS** : Final DATE : 21/06/19

RIG **CONE TYPE** : S15-CFIP CONE ID : S15-CFIP.1735

OPERATOR : AG & CM ANALYSED BY: LD DATE: 03/07/2019 CHECKED BY : LD DATE: 03/07/2019

DATE: 03/07/2019 APPROVED BY: DW

REMARK Test OK.

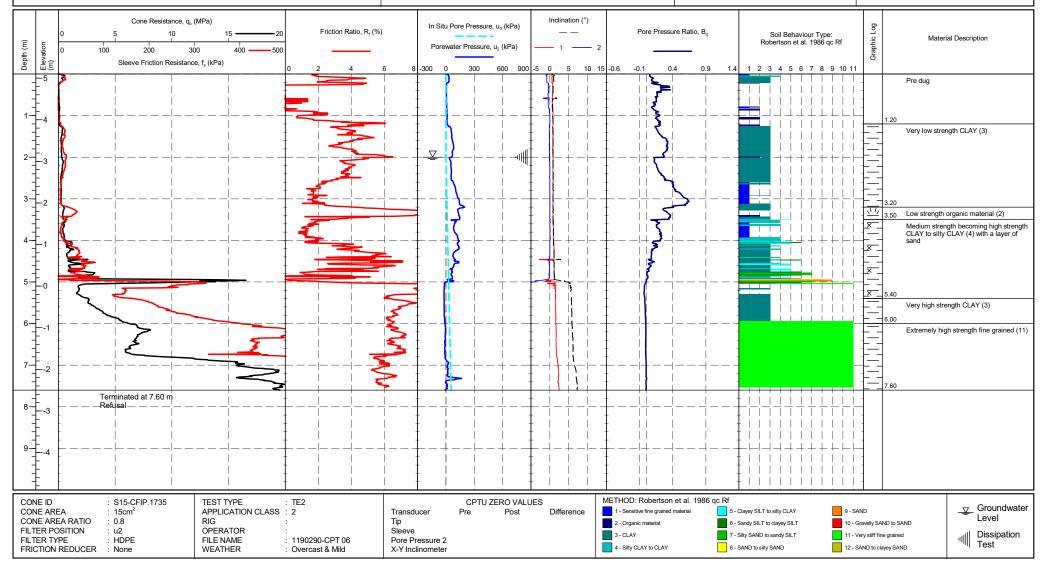
CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING** : 325071.900 m **NORTHING** : 180693.600 m **ELEVATION** : 5.100 m OD

CHECKED BY

TERMINATION REASON: Refusal


Remark:

Test refused on total pressure.

SHEET : 1 OF 1 **STATUS** : Final

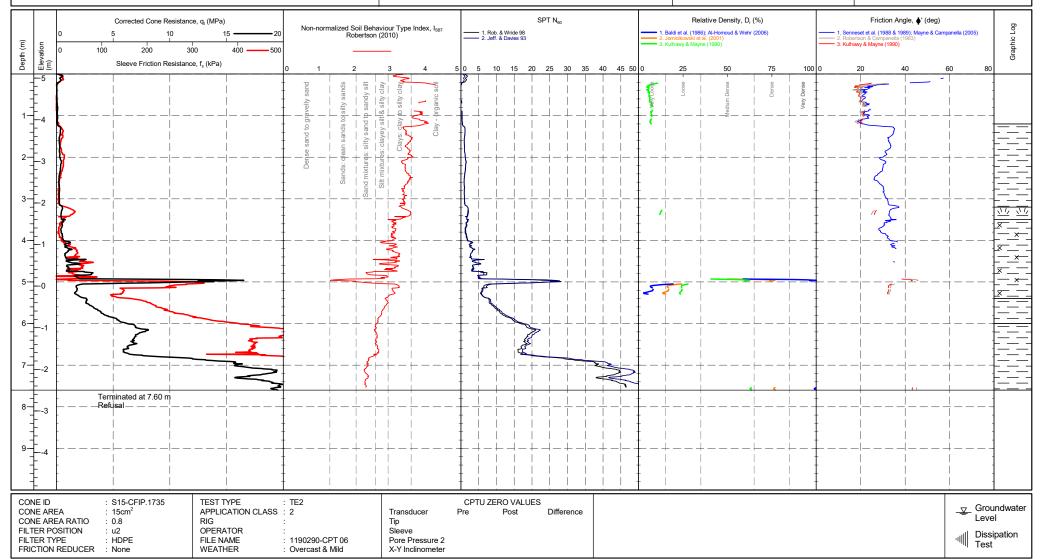
CPT 06

TEST DATE: 17/06/2019 PLOT DATE: 04/07/2019

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325071.900 m **NORTHING** : 180693.600 m **ELEVATION** : 5.100 m OD


CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

CPT 06

TEST DATE : 17/06/2019 PLOT DATE: 04/07/2019

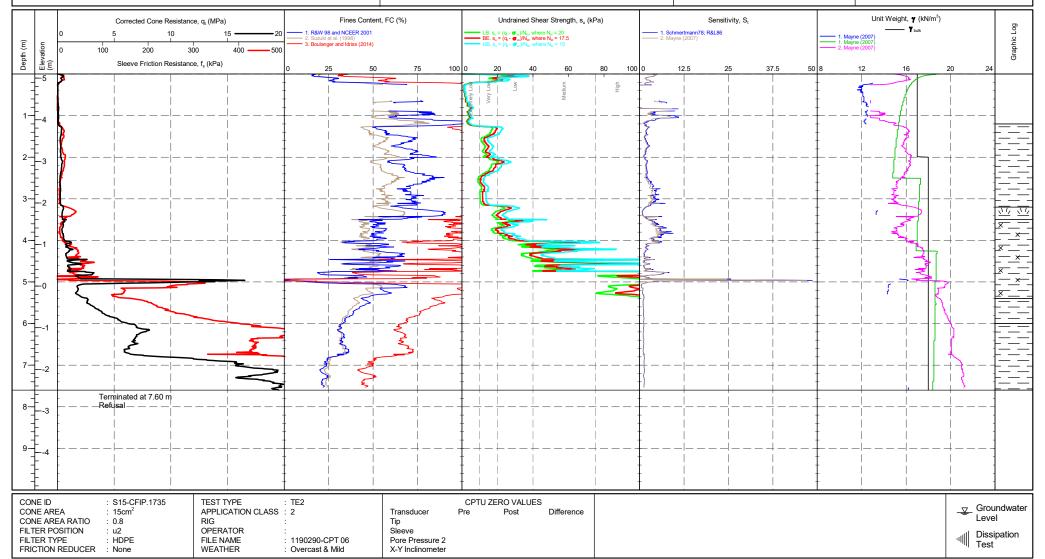
CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325071.900 m **NORTHING** : 180693.600 m **ELEVATION** : 5.100 m OD

CHECKED BY

TERMINATION REASON: Refusal


Remark:

Test refused on total pressure.

SHEET : 1 OF 1 STATUS : Final

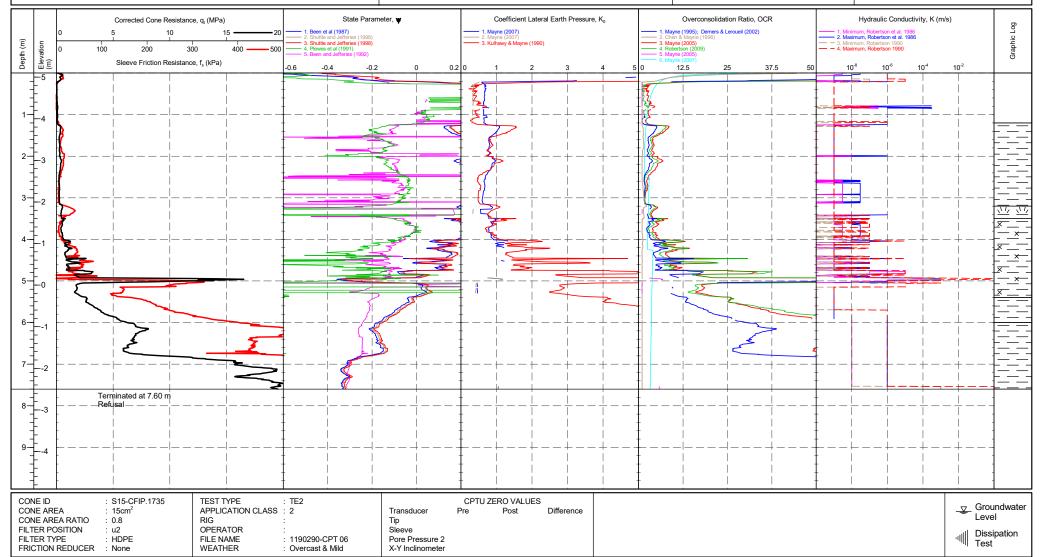
CPT 06

TEST DATE : 17/06/2019 PLOT DATE: 04/07/2019

CPT 06

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway


: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325071.900 m **NORTHING** : 180693.600 m **ELEVATION** : 5.100 m OD

CHECKED BY

TERMINATION REASON: Refusal

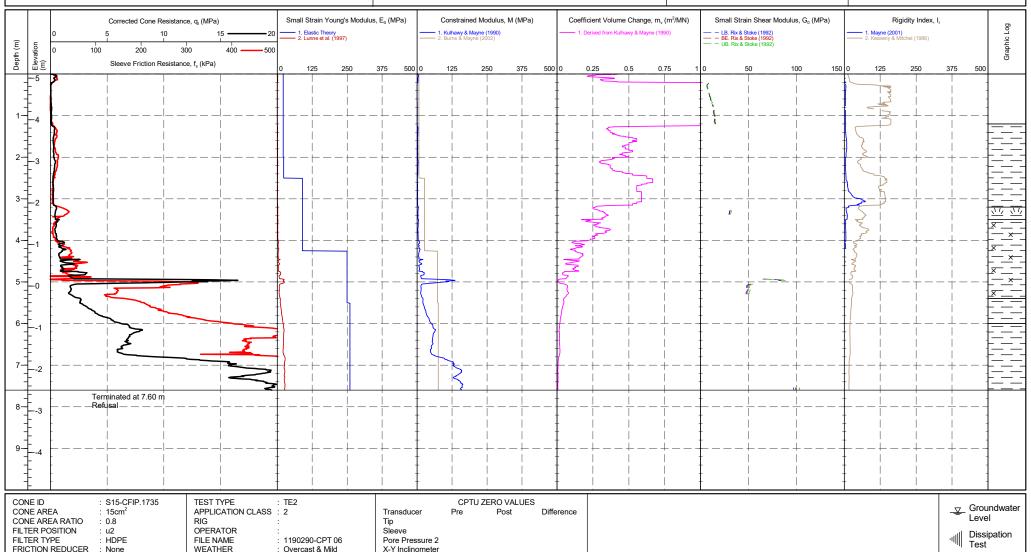
Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

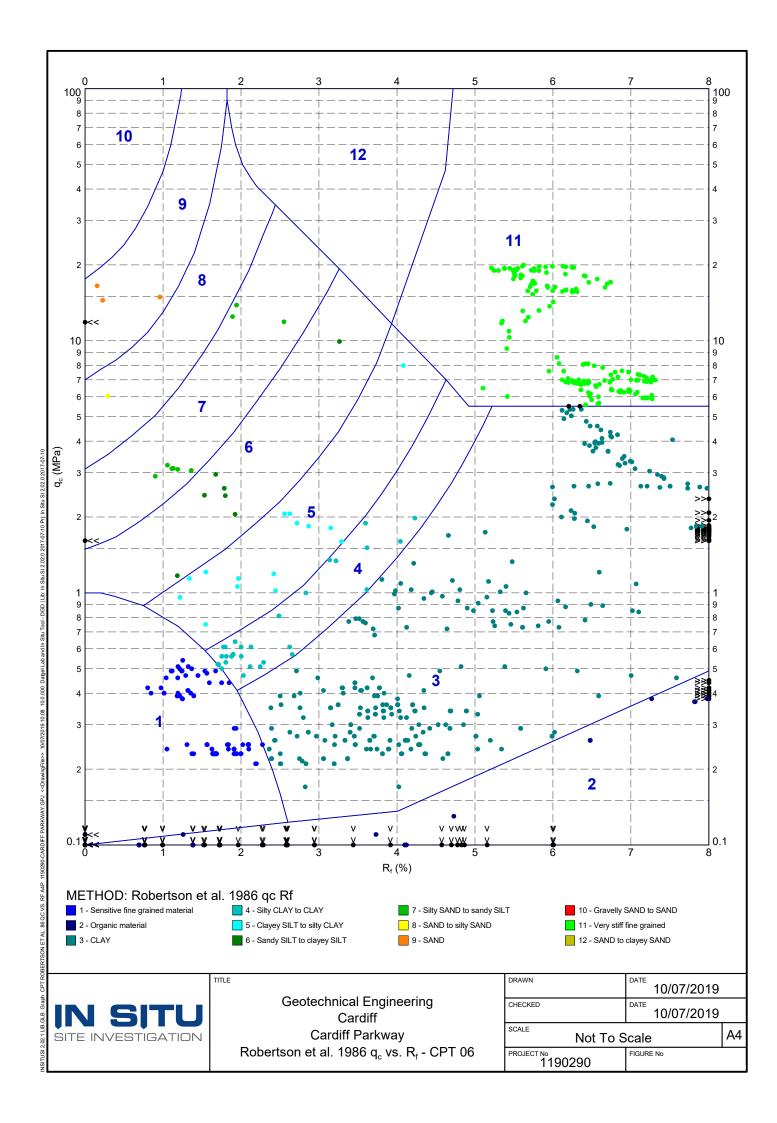
TEST DATE : 17/06/2019 PLOT DATE: 04/07/2019

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325071.900 m **NORTHING** : 180693.600 m **ELEVATION** : 5.100 m OD


CHECKED BY


TERMINATION REASON: Refusal

Remark: SHEET : 1 OF 1 STATUS Test refused on total pressure.

: Final TEST DATE : 17/06/2019 PLOT DATE: 04/07/2019

CPT 06

DISSIPATION TEST

: 1 OF 1

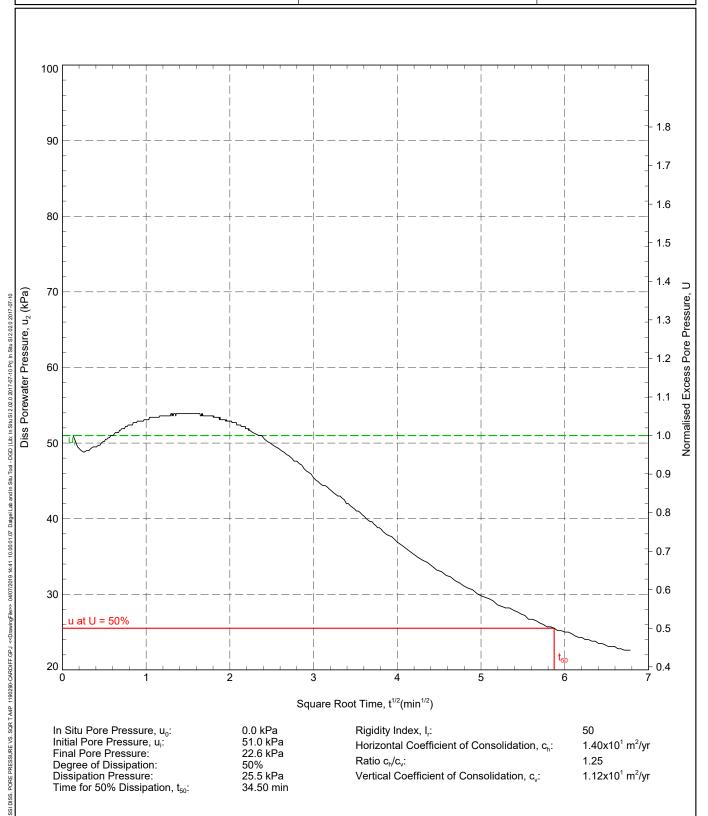
Test ID

CPT 06 - 2.00 m

SHEET

: Final **STATUS** DATE : 17/06/19

CLIENT : Geotechnical Engineering


ENGINEER

Cardiff Parkway

PROJECT LOCATION Cardiff PROJECT No.: 1190290 **AREA** : Cardiff **EASTING** : 325071.9 m NORTHING : 180693.6 m

COORD. SYS .:

ELEVATION : 5.10 m

RIG **CONE TYPE** : S15-CFIP CONE ID : S15-CFIP.1735

: AG & CM

OPERATOR

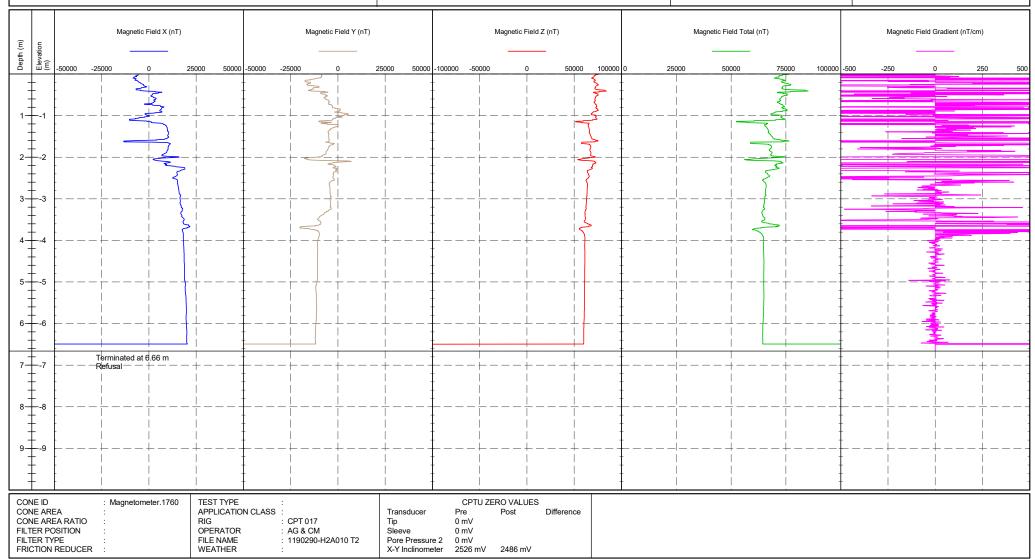
ANALYSED BY: LD DATE: 03/07/2019 DATE: 03/07/2019 CHECKED BY : LD DATE: 03/07/2019 APPROVED BY: DW

REMARK Test OK.

APPENDIX C Magnetometer Data

H2A010 T2

CLIENT: Geotechnical Engineering


PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD

CHECKED BY · 1 D TERMINATION REASON: Refusal Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 25/06/2019 PLOT DATE: 26/06/2019

H2B034 T2

CLIENT: Geotechnical Engineering

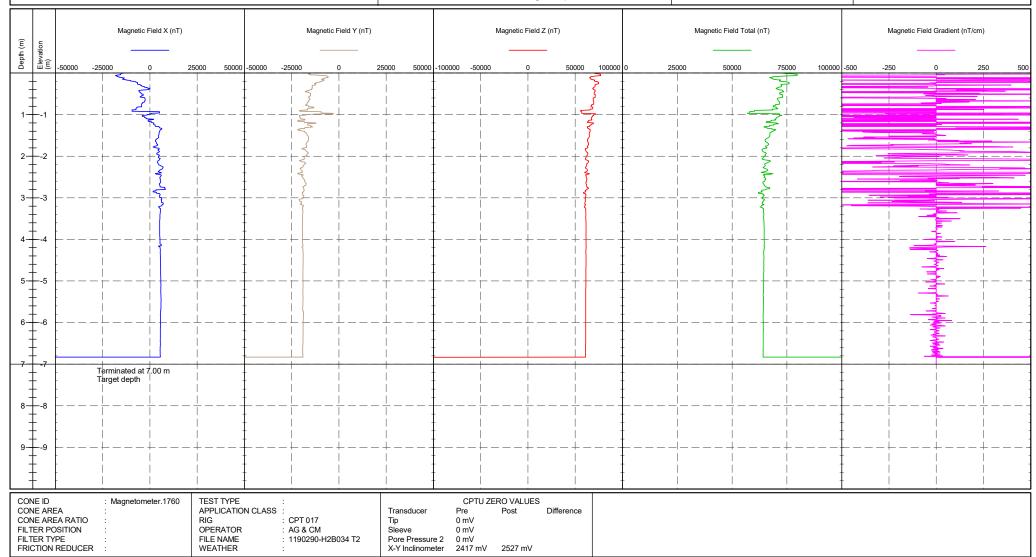
PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth


Remark: Test reached the target depth.

STATUS : Final TEST DATE : 25/06/2019 PLOT DATE: 26/06/2019

: 1 OF 1

METHOD

SHEET

H2B035 T2

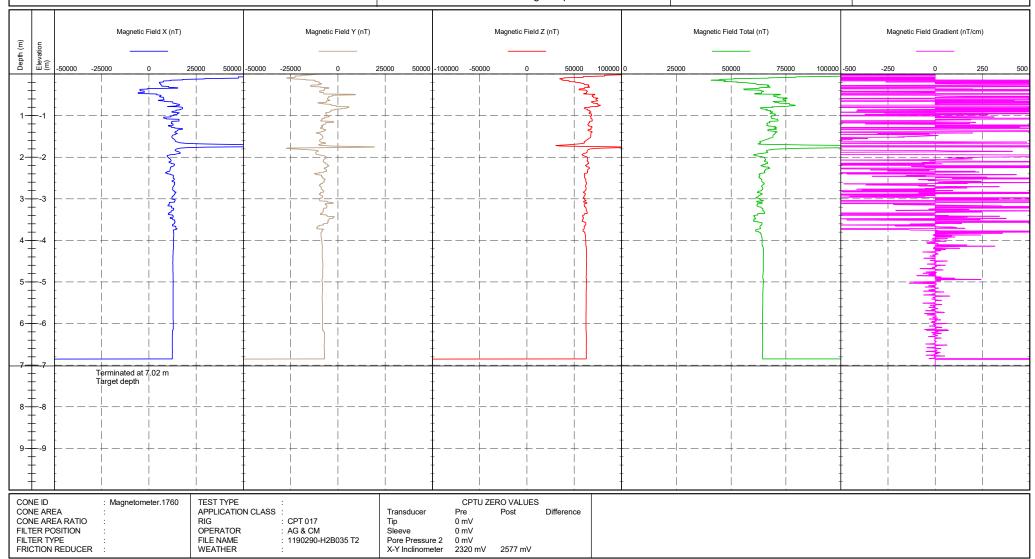
CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD

CHECKED BY · 1 D


TERMINATION REASON: Target depth

Remark: SHEET Test reached the target depth.

STATUS : Final TEST DATE : 25/06/2019

: 1 OF 1

PLOT DATE: 26/06/2019

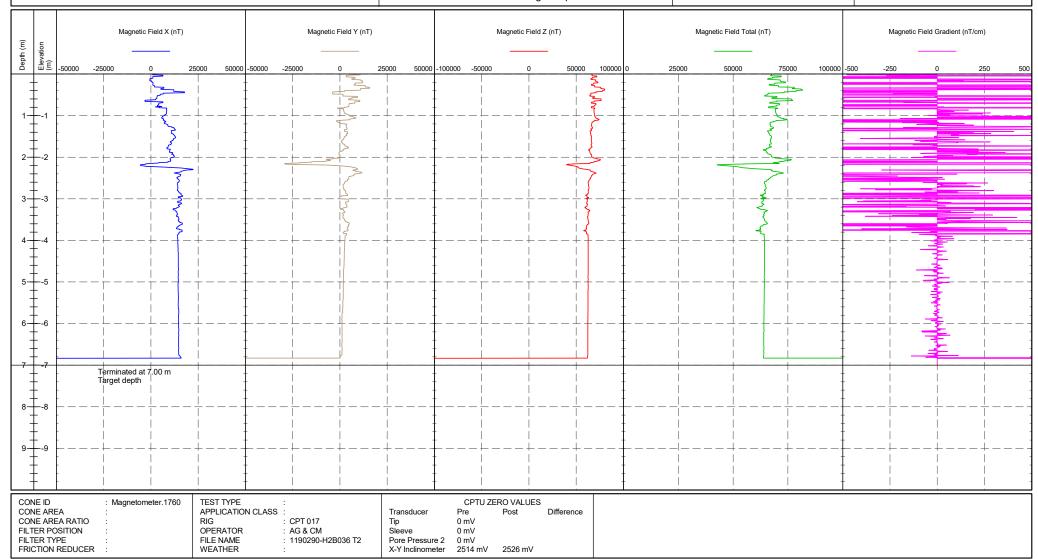
H2B036 T2

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD


CHECKED BY · 1 D

TERMINATION REASON: Target depth

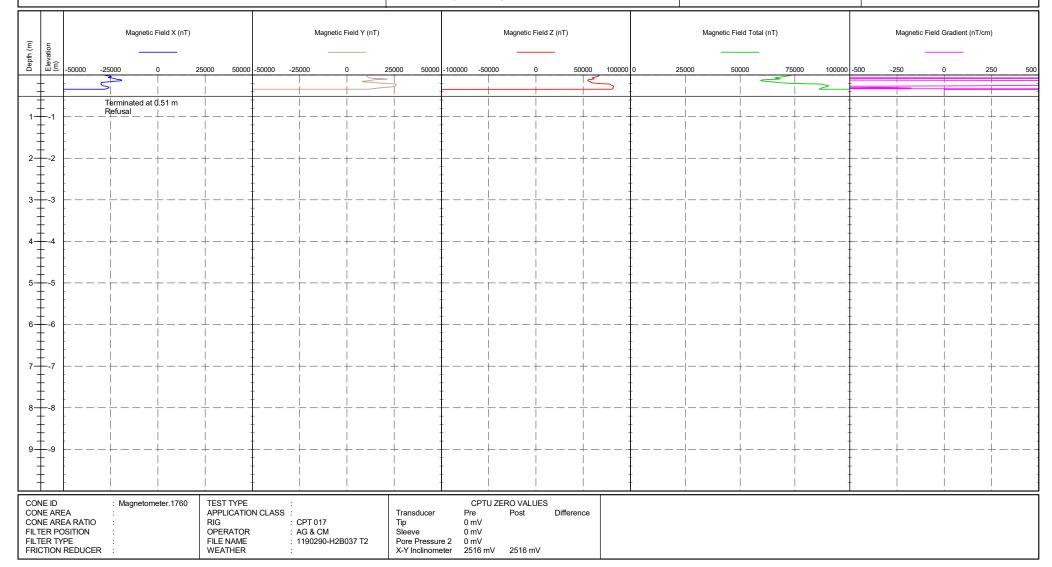
Remark: Test reached the target depth.

SHEET : 1 OF 1 STATUS : Final TEST DATE : 25/06/2019

PLOT DATE: 26/06/2019

H2B037 T2

CLIENT: Geotechnical Engineering


PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD

CHECKED BY · 1 D TERMINATION REASON: Refusal Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

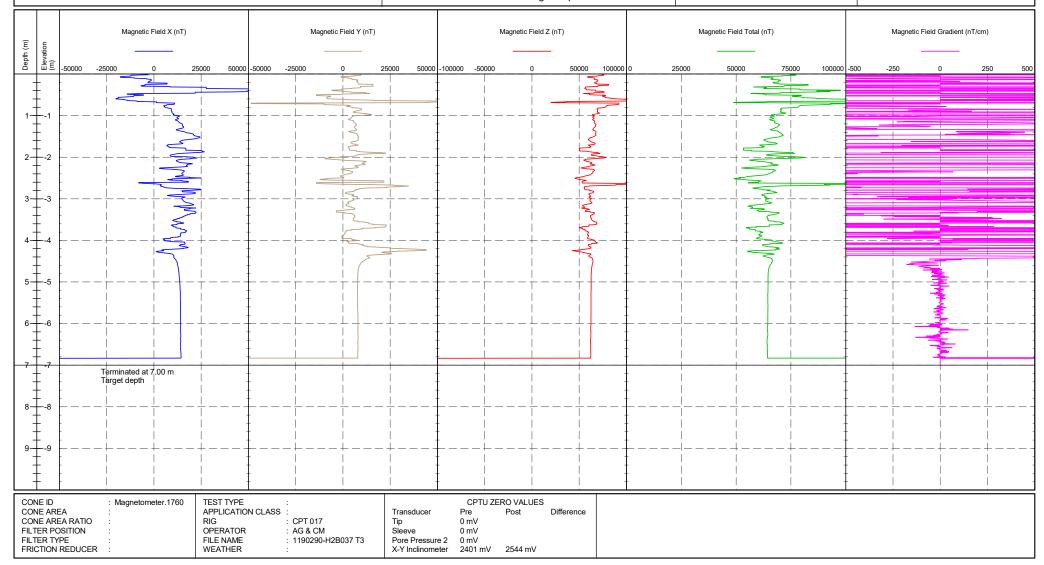
TEST DATE : 25/06/2019 PLOT DATE: 26/06/2019

H2B037 T3

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 25/06/2019 PLOT DATE: 26/06/2019

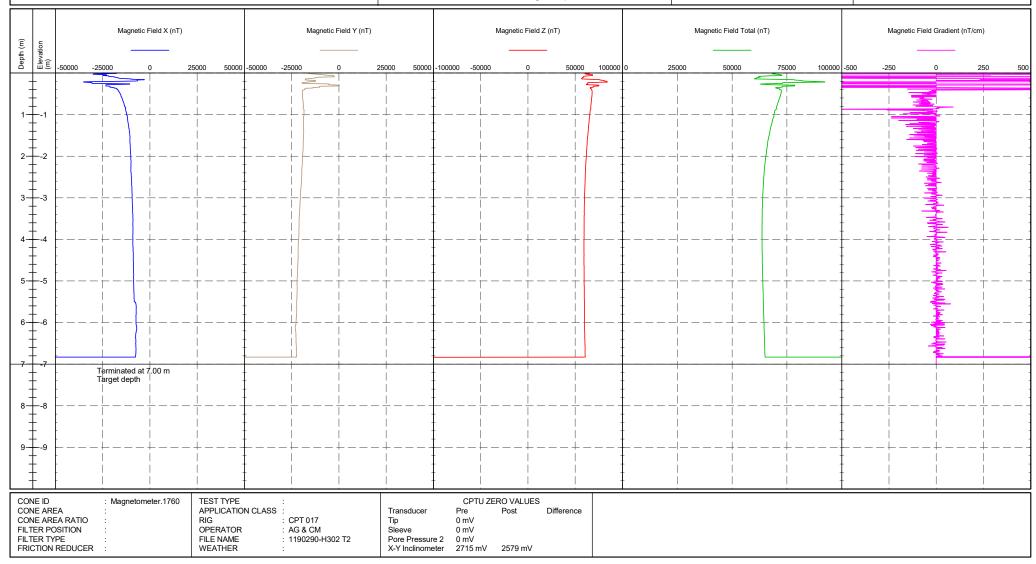
H302 T2

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD


CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth.

SHEET : 1 OF 1 STATUS : Final

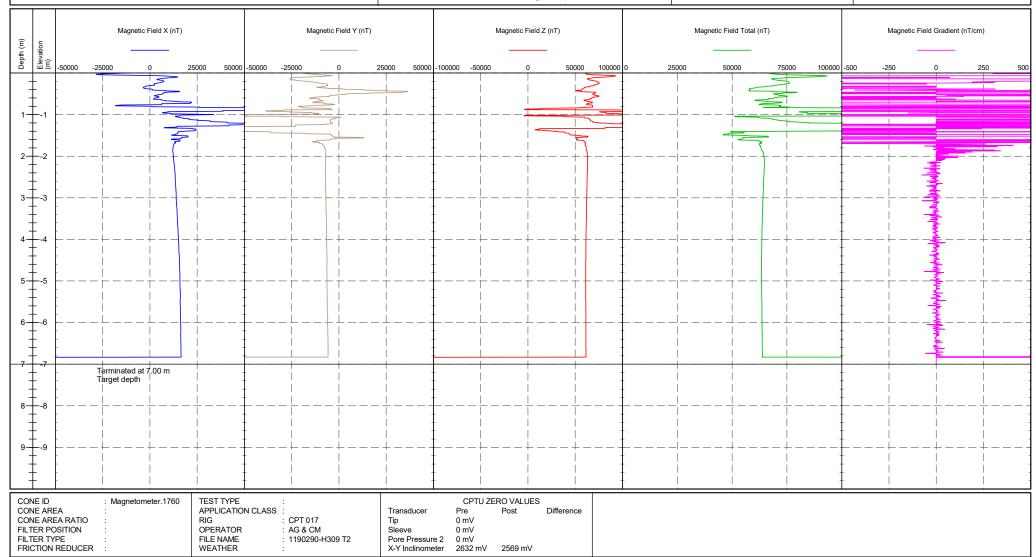
TEST DATE : 25/06/2019 PLOT DATE: 26/06/2019

H309 T2

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

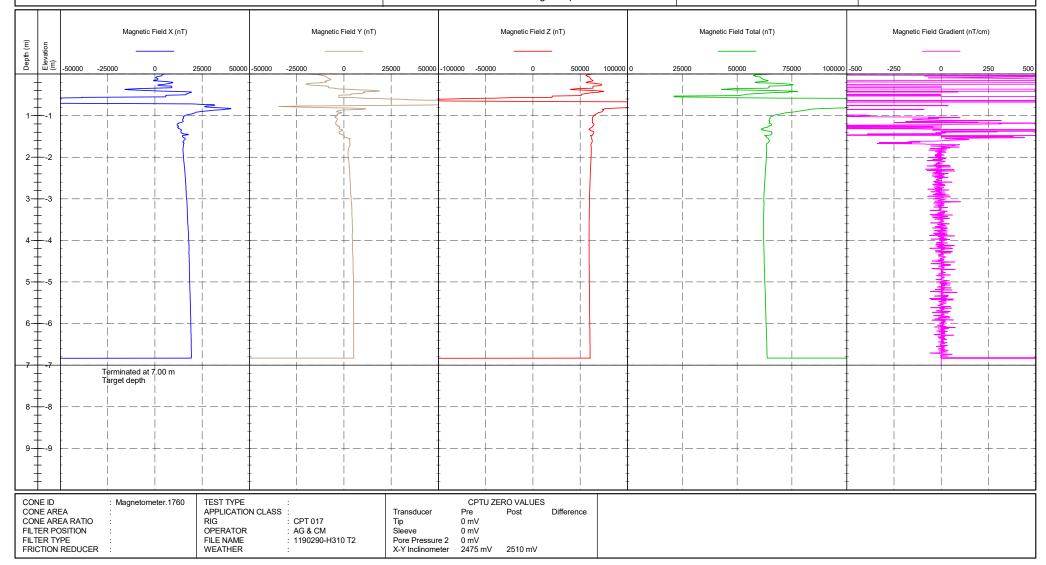
TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

H310 T2

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

H341

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

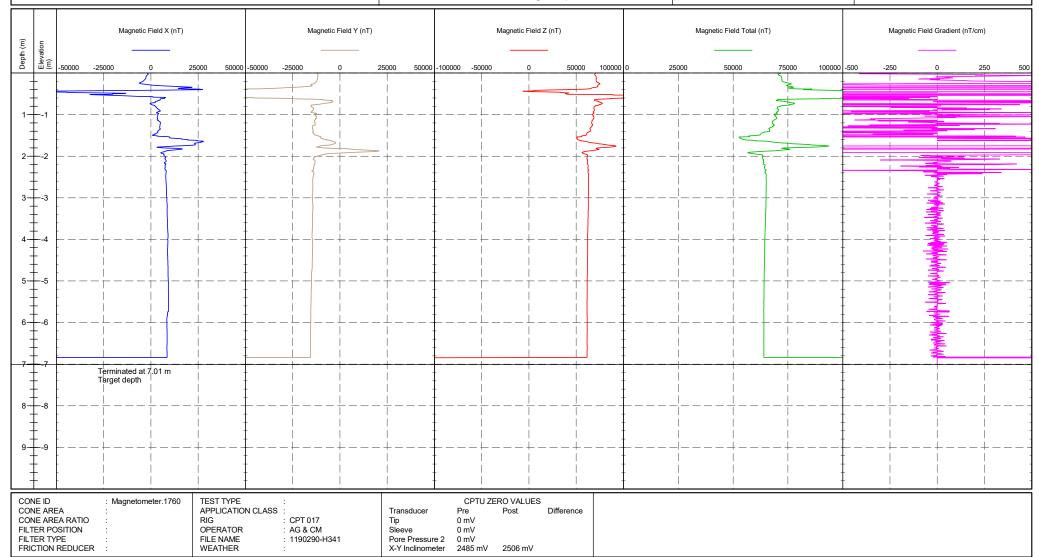
LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth.


STATUS : Final TEST DATE : 24/06/2019

: 1 OF 1

PLOT DATE: 26/06/2019

METHOD

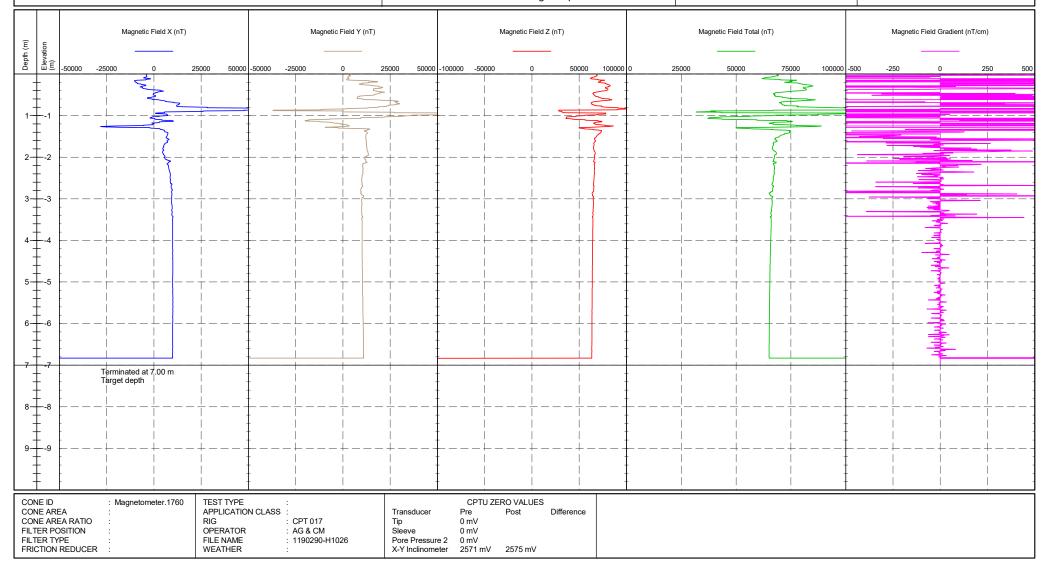
SHEET

H1026

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

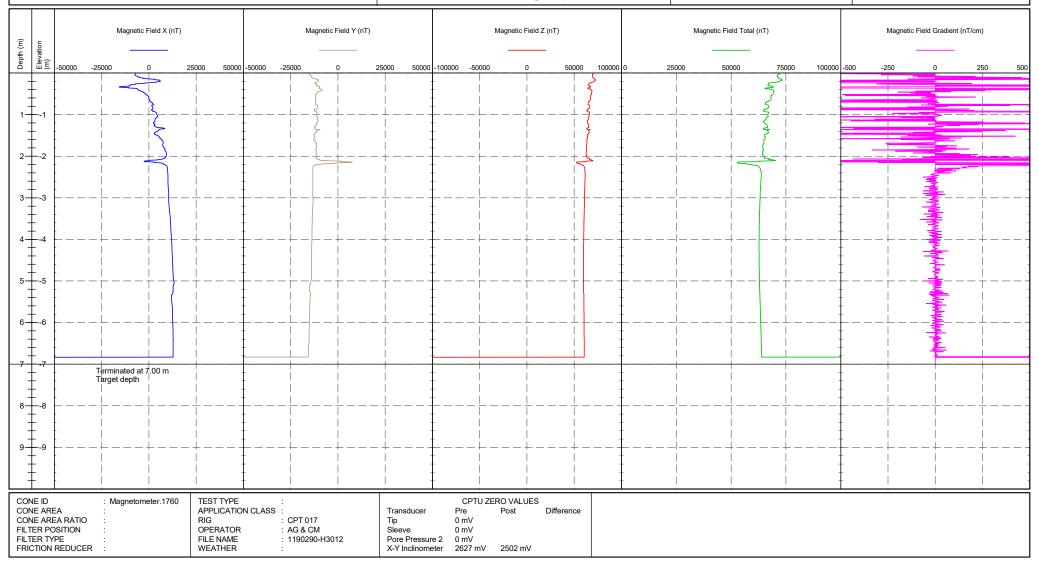
TEST DATE : 25/06/2019 PLOT DATE: 26/06/2019

H3012

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

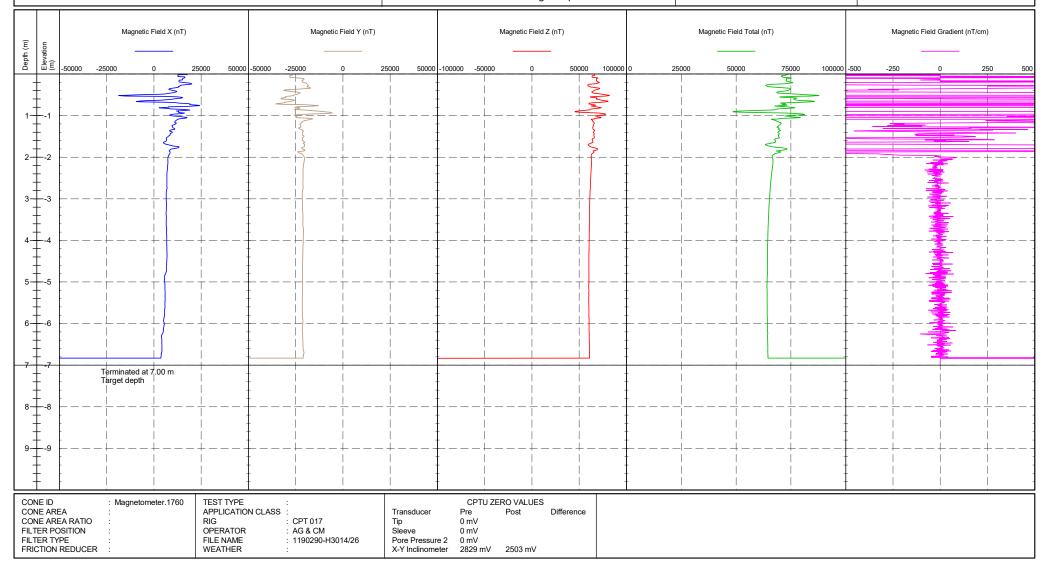
TEST DATE : 25/06/2019 PLOT DATE: 26/06/2019

H3014/26

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

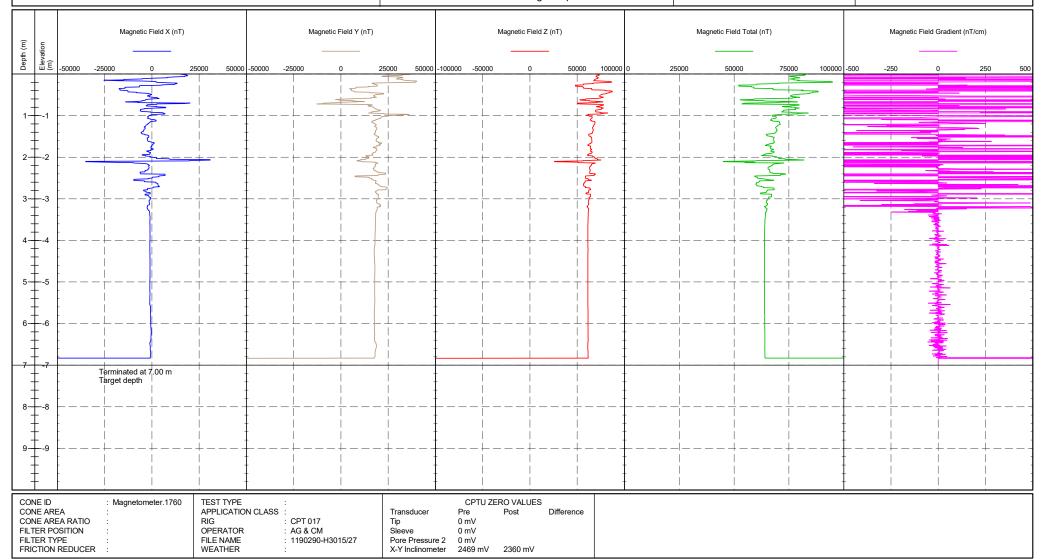
H3015/27

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD


CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth.

SHEET : 1 OF 1 STATUS : Final TEST DATE : 24/06/2019

PLOT DATE: 26/06/2019

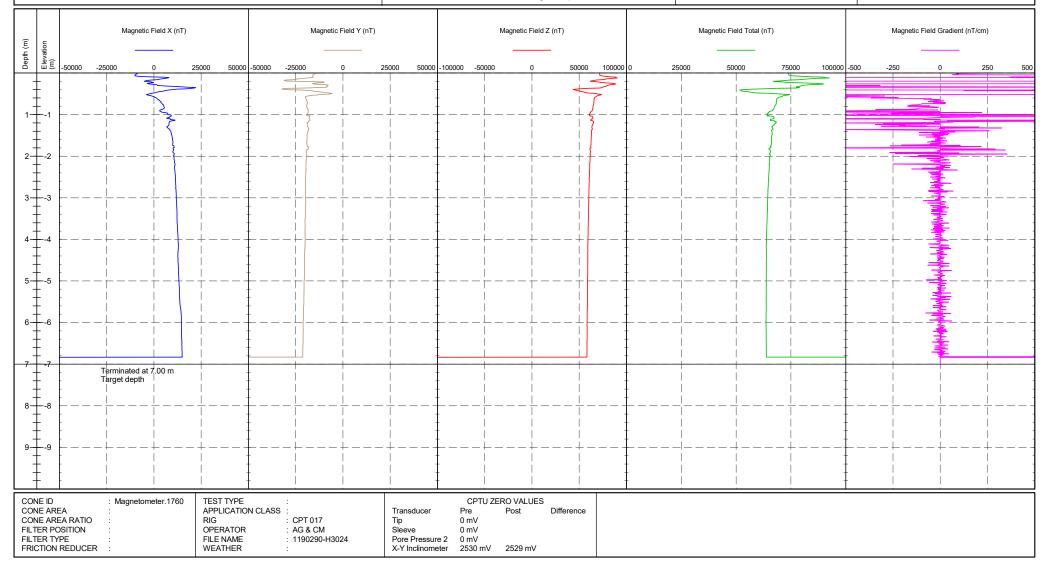
H3024

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD


CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth.

SHEET : 1 OF 1 STATUS : Final

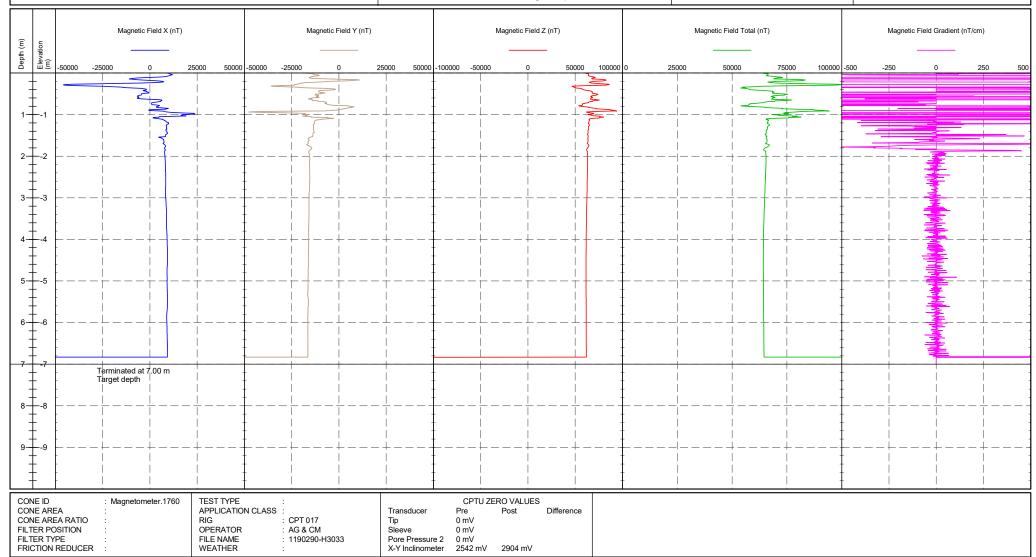
TEST DATE : 25/06/2019 PLOT DATE: 26/06/2019

H3033

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

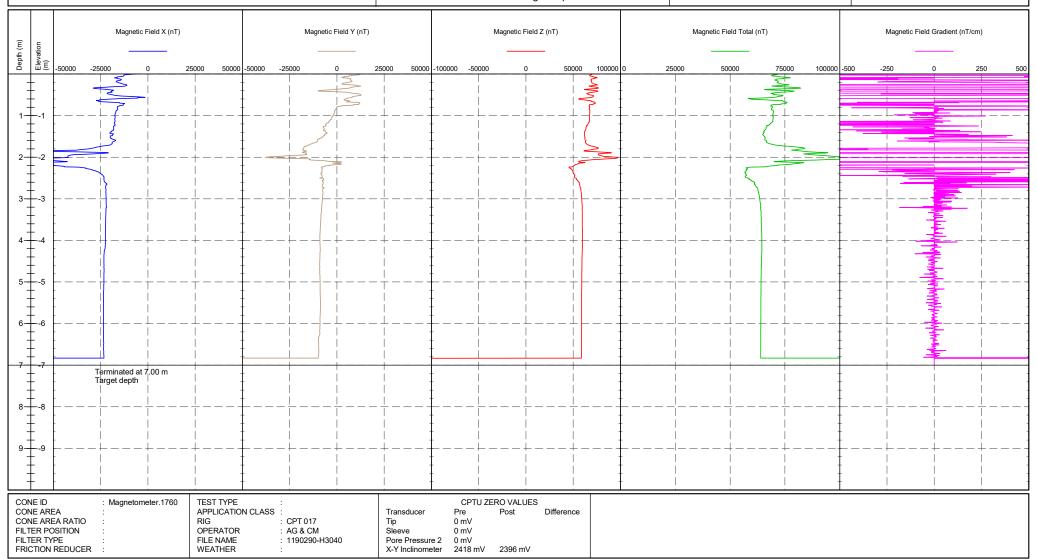
TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

H3040

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

H3042

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

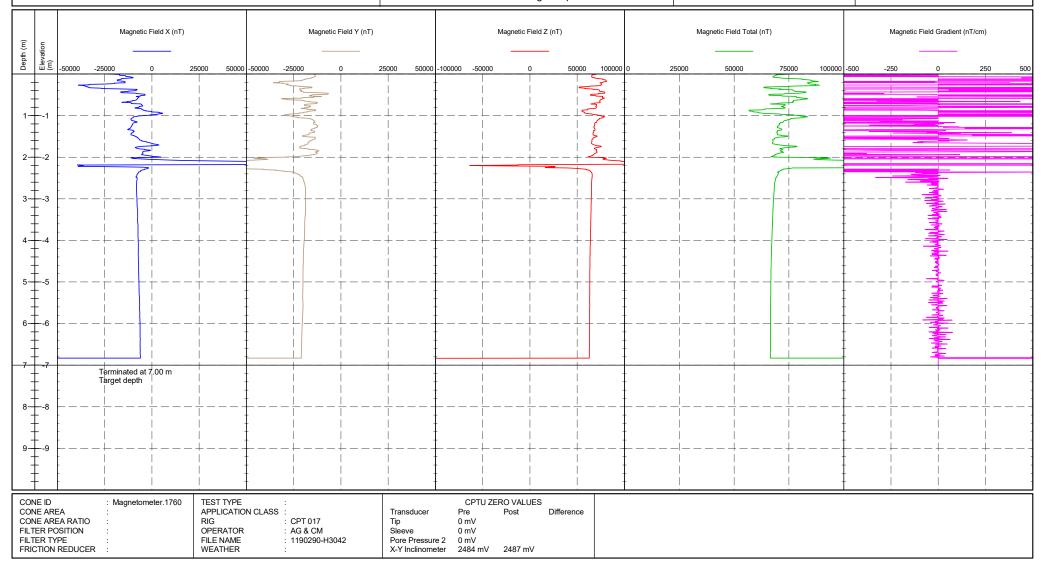
LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth.


STATUS : Final TEST DATE : 25/06/2019

PLOT DATE: 26/06/2019

: 1 OF 1

METHOD

SHEET

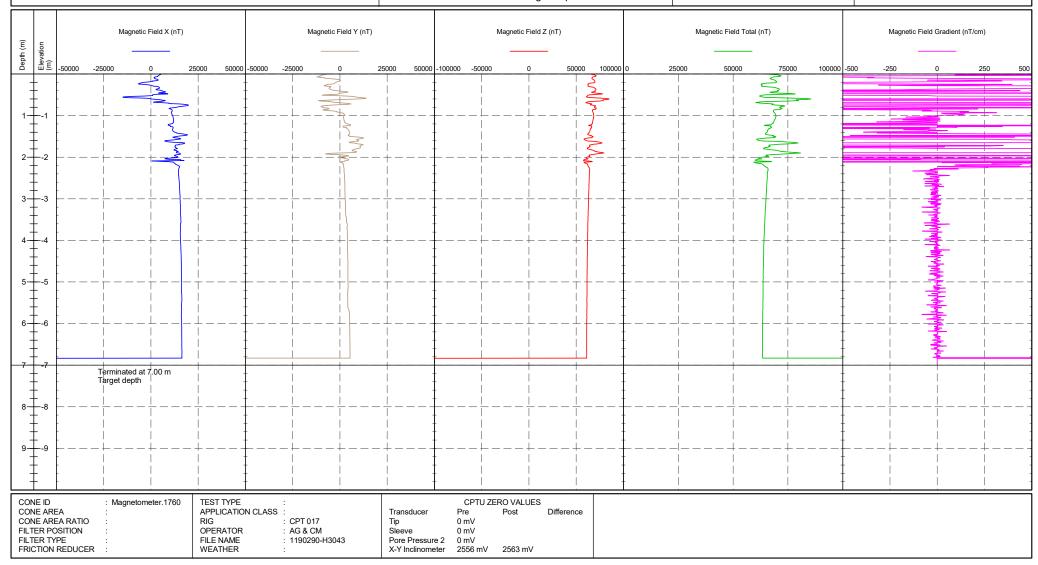
H3043

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD


CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth.

SHEET : 1 OF 1 STATUS : Final TEST DATE : 24/06/2019

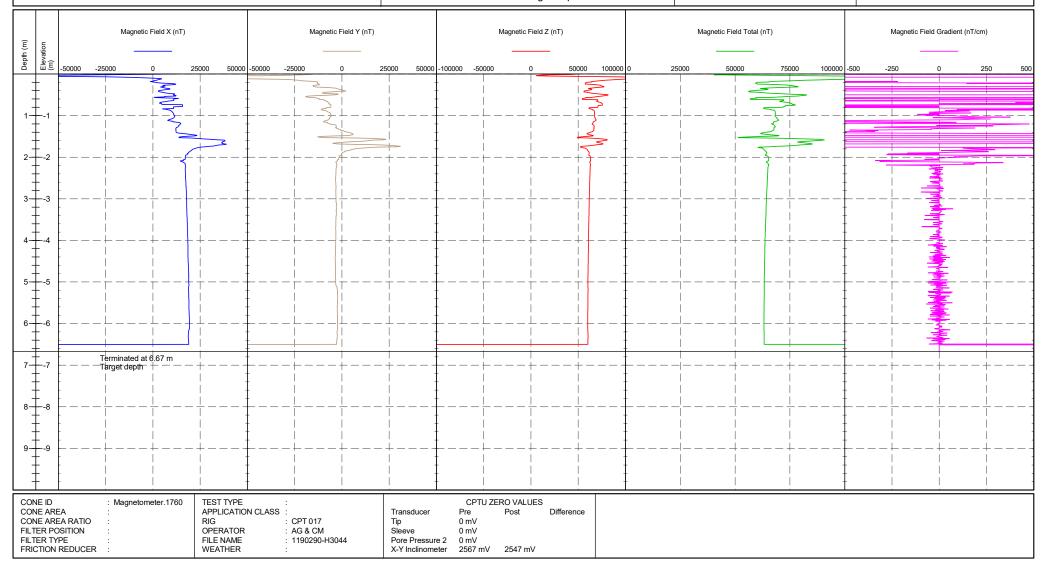
PLOT DATE: 26/06/2019

H3044

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

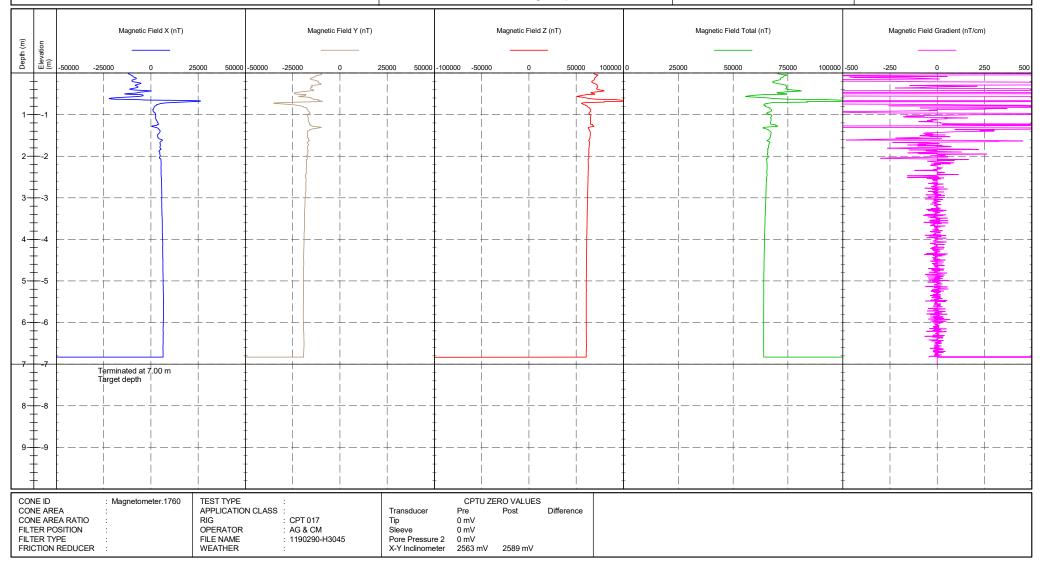
H3045

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD


CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth.

SHEET : 1 OF 1 STATUS : Final TEST DATE : 24/06/2019

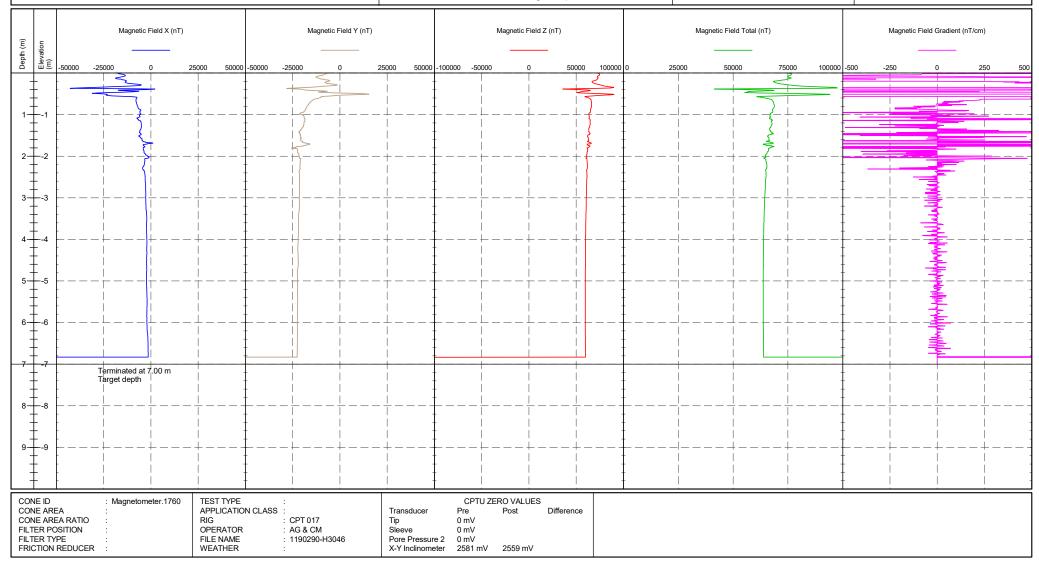
PLOT DATE: 26/06/2019

H3046

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

H3013025

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

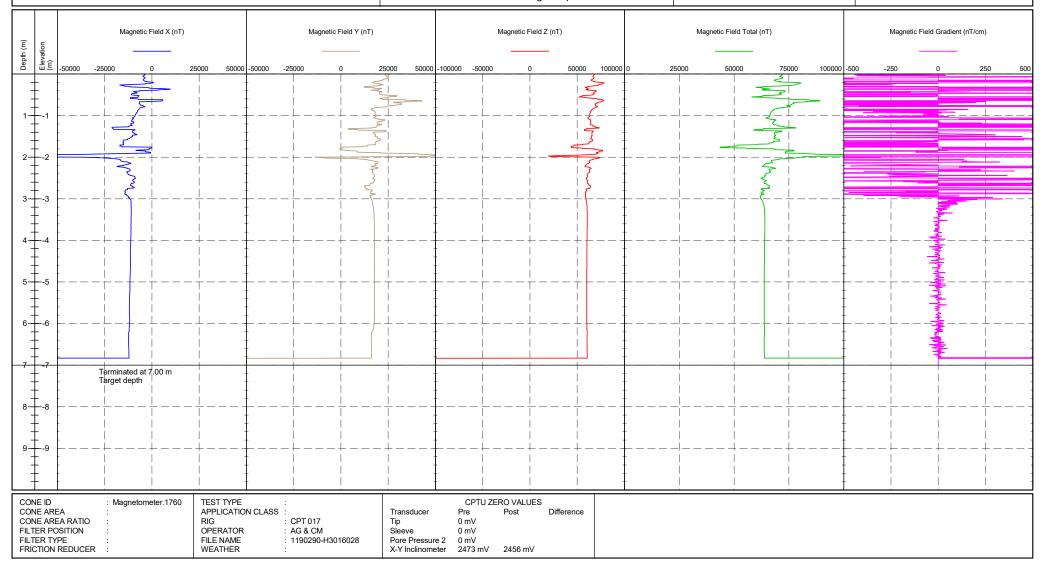
TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

H3016028

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING**


NORTHING ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

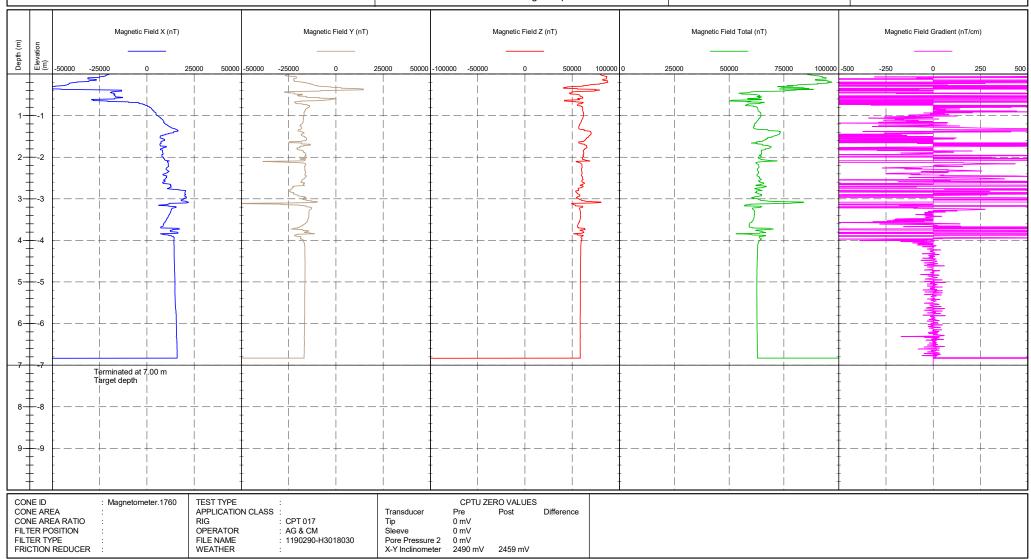
H3018030

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD


CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: SHEET Test reached the target depth.

STATUS : Final TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

: 1 OF 1

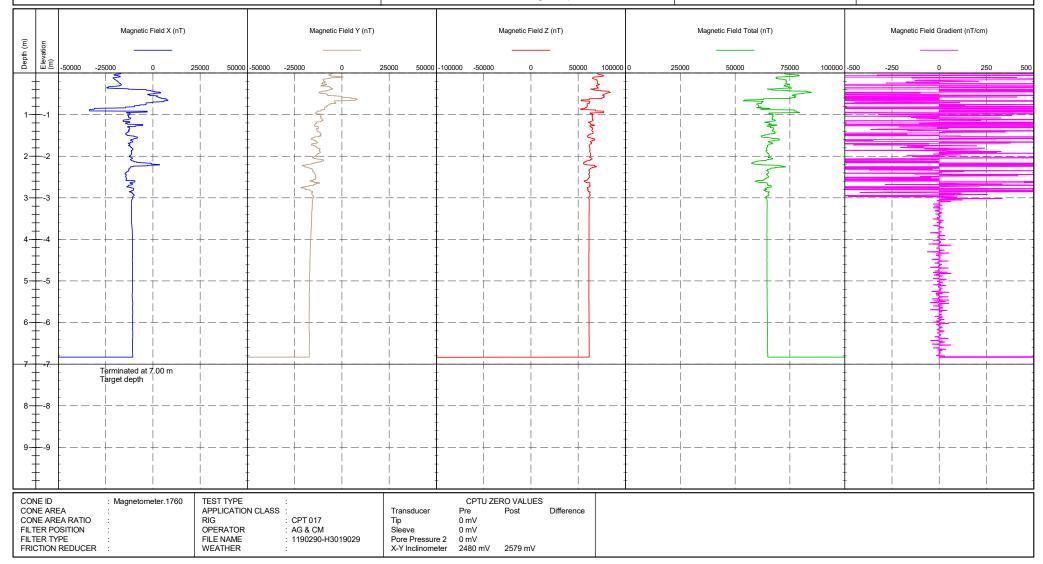
H3019029

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD


CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth.

SHEET : 1 OF 1 STATUS : Final TEST DATE : 24/06/2019

PLOT DATE: 26/06/2019

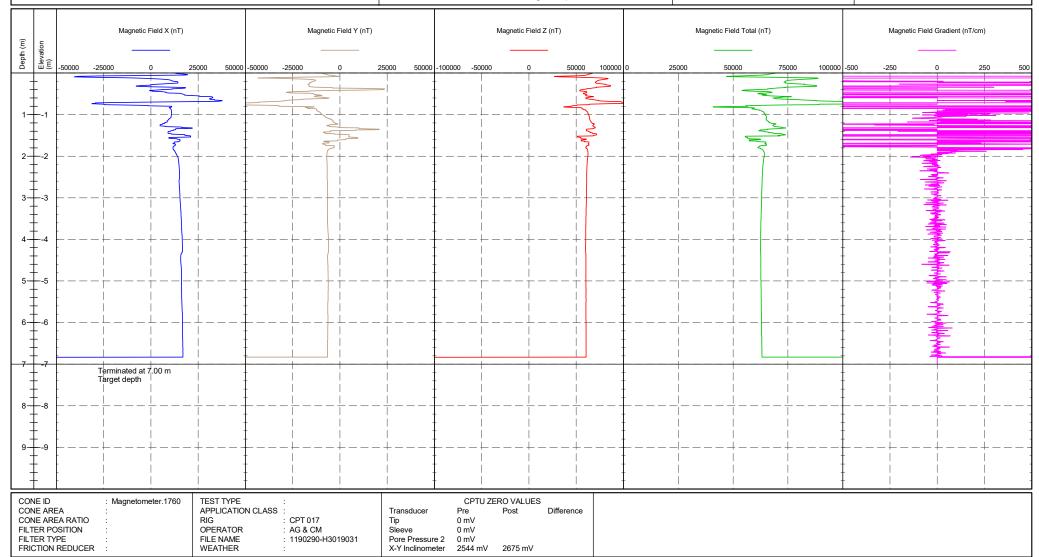
H3019031

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD


CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth.

SHEET : 1 OF 1 STATUS : Final TEST DATE : 24/06/2019

PLOT DATE: 26/06/2019

H3020032

CLIENT: Geotechnical Engineering

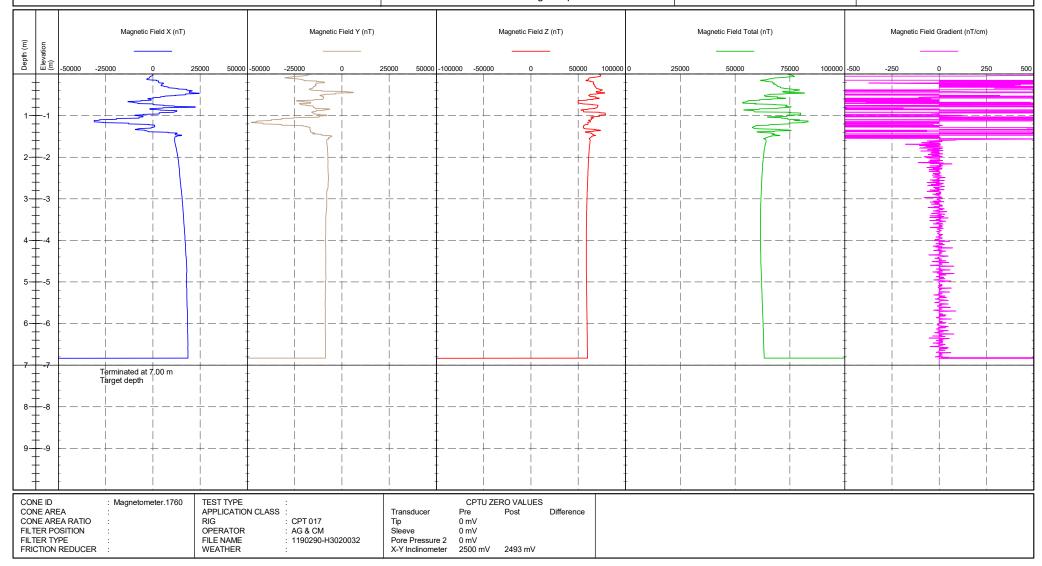
PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING NORTHING**

ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth


Remark: Test reached the target depth.

STATUS : Final TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

: 1 OF 1

METHOD

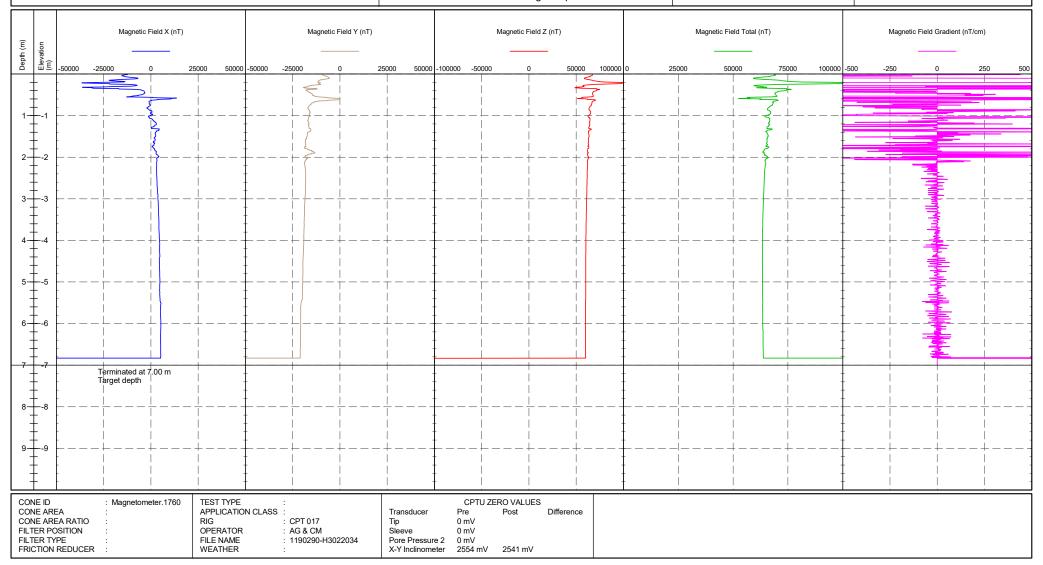
SHEET

H3022034

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

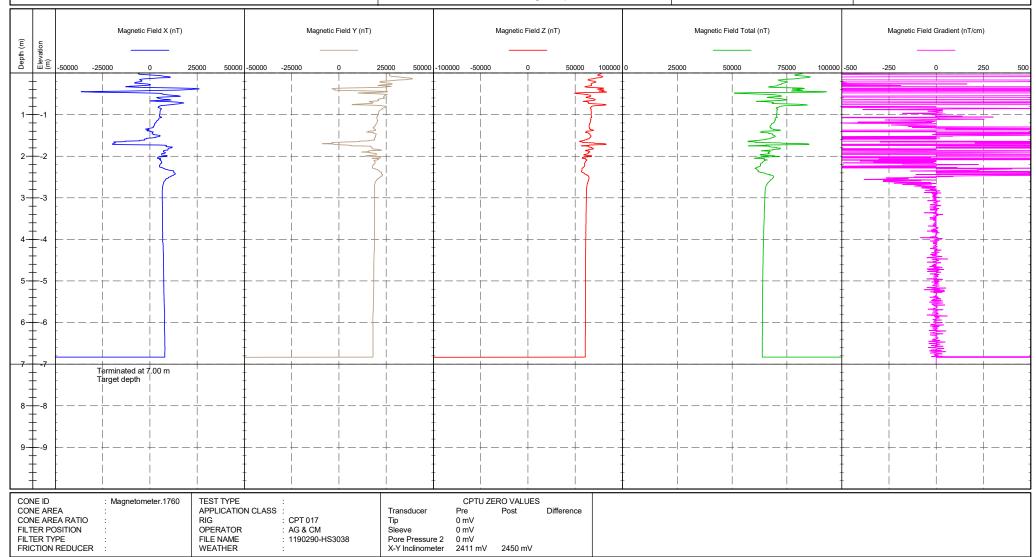
TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

HS3038

CLIENT: Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING NORTHING**


ELEVATION : 0.000 m OD

CHECKED BY · 1 D

TERMINATION REASON: Target depth

Remark: Test reached the target depth. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 24/06/2019 PLOT DATE: 26/06/2019

APPENDIX D

Seismic Dilatometer Marchetti (SDMT) Measurements

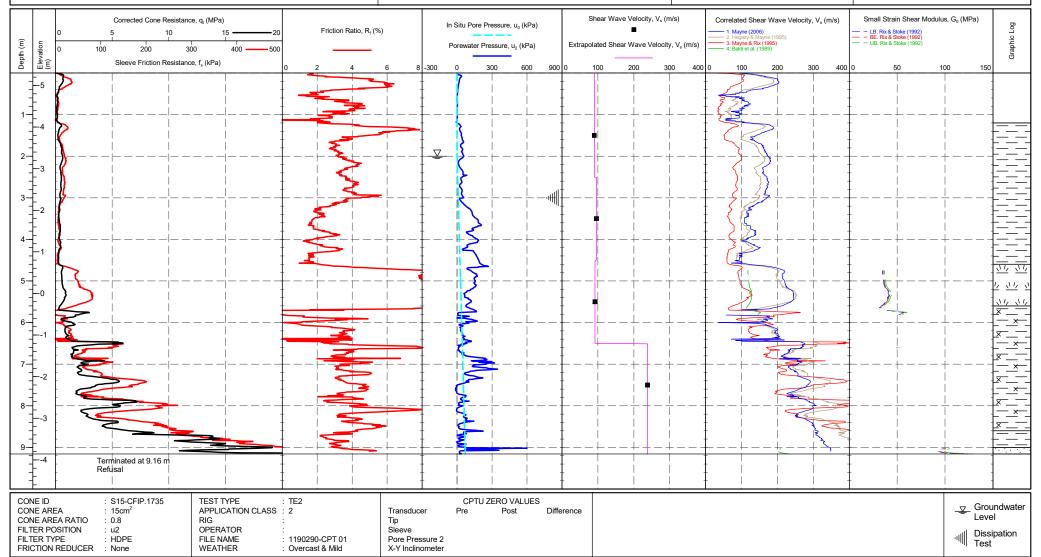
CPT 01

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325239.800 m **NORTHING** : 180759.500 m **ELEVATION** : 5.300 m OD

CHECKED BY


TERMINATION REASON: Refusal

Remark: Test refused on total pressure.

SHEET : 1 OF 1 STATUS : Final

TEST DATE : 17/06/2019 PLOT DATE: 04/07/2019

METHOD : ISO 22476-1:2012

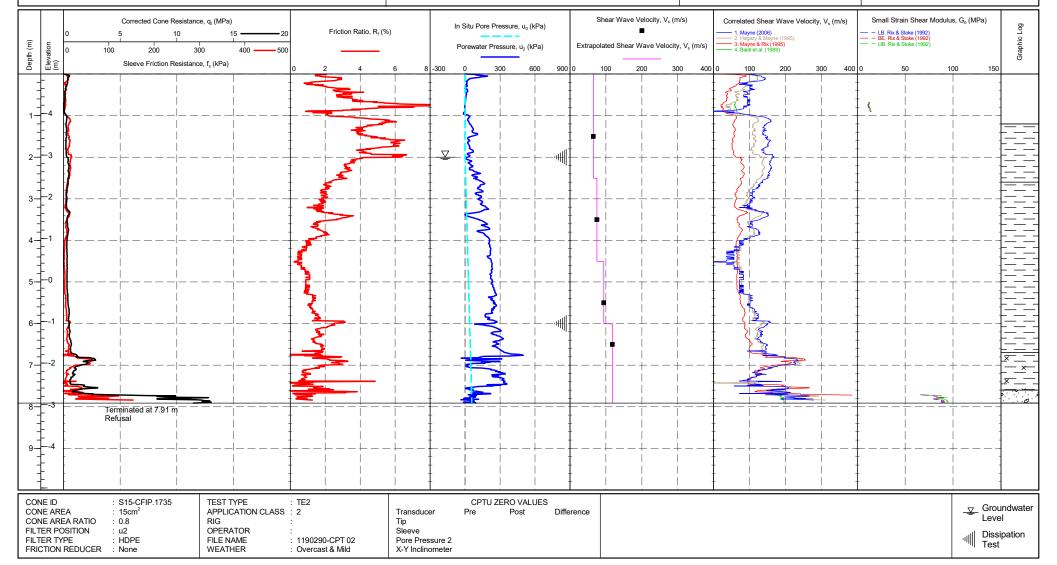
CPT 02

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325413.600 m **NORTHING** : 180803.000 m

: 4.950 m OD **ELEVATION**


CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on inclination. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 24/06/2019 PLOT DATE: 04/07/2019

METHOD : ISO 22476-1:2012

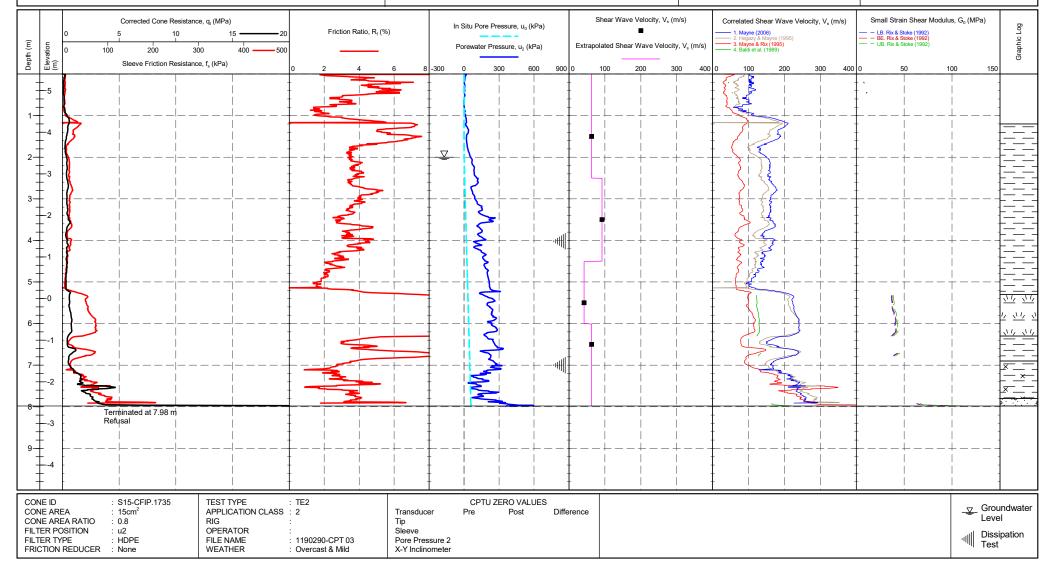
CPT 03

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No.: 1190290 **EASTING** : 325294.200 m **NORTHING** : 180730.200 m : 5.400 m OD **ELEVATION**

CHECKED BY


TERMINATION REASON: Refusal

Remark: SHEET STATUS Test refused on total pressure.

: Final TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

METHOD : ISO 22476-1:2012

: 1 OF 1

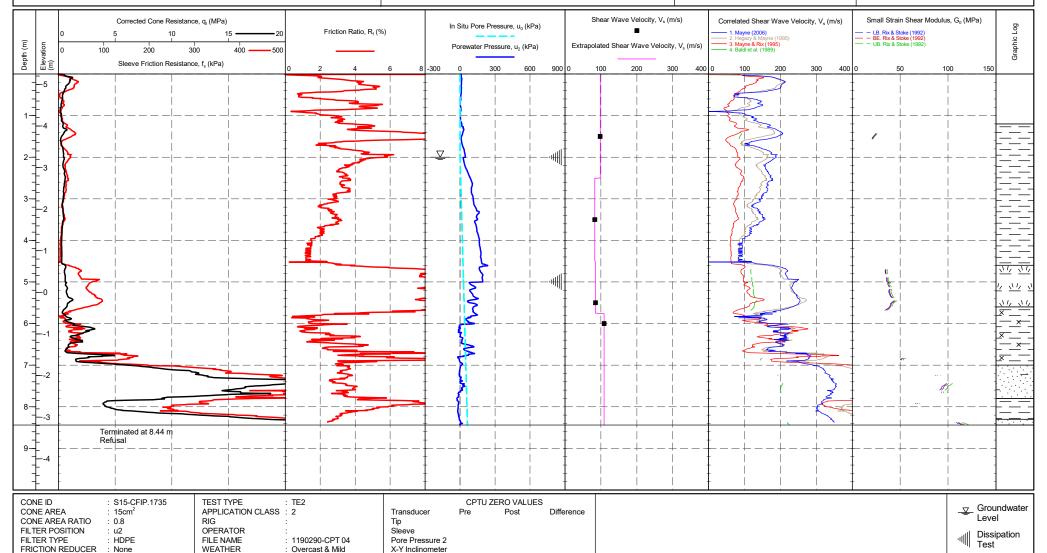
CPT 04

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325195.400 m **NORTHING** : 180664.200 m **ELEVATION** : 5.250 m OD

CHECKED BY


TERMINATION REASON: Refusal

Remark: SHEET STATUS Test refused on total pressure.

: Final TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

METHOD : ISO 22476-1:2012

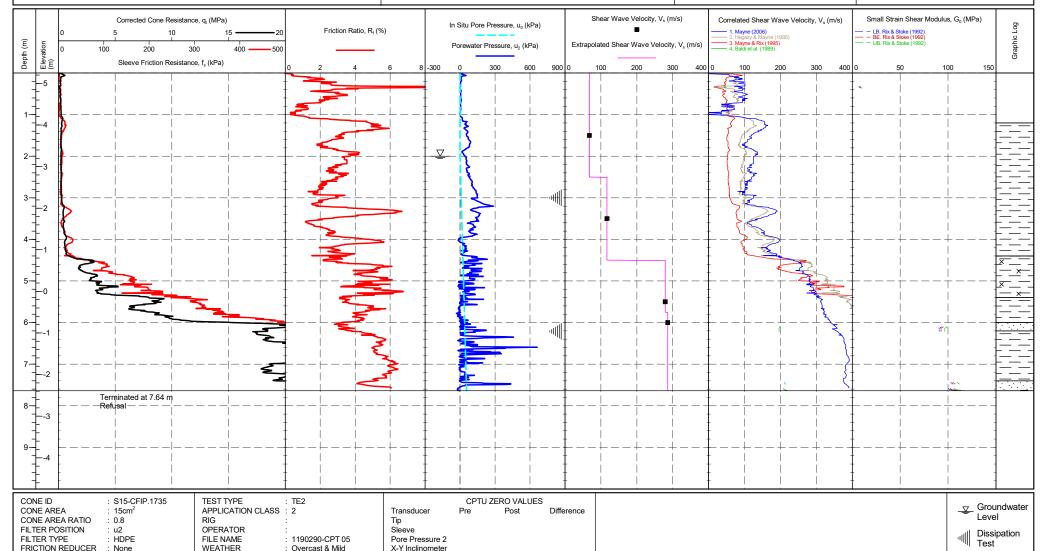
: 1 OF 1

CPT 05

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325097.400 m **NORTHING** : 180591.800 m


ELEVATION : 5.250 m OD CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on total pressure. SHEET : 1 OF 1 STATUS : Final

TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

METHOD : ISO 22476-1:2012

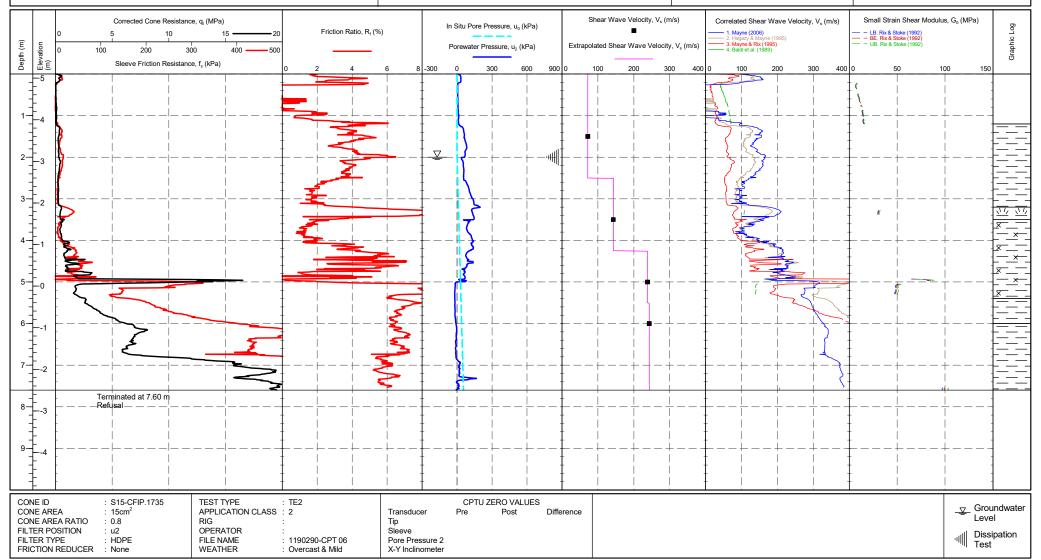
CLIENT : Geotechnical Engineering

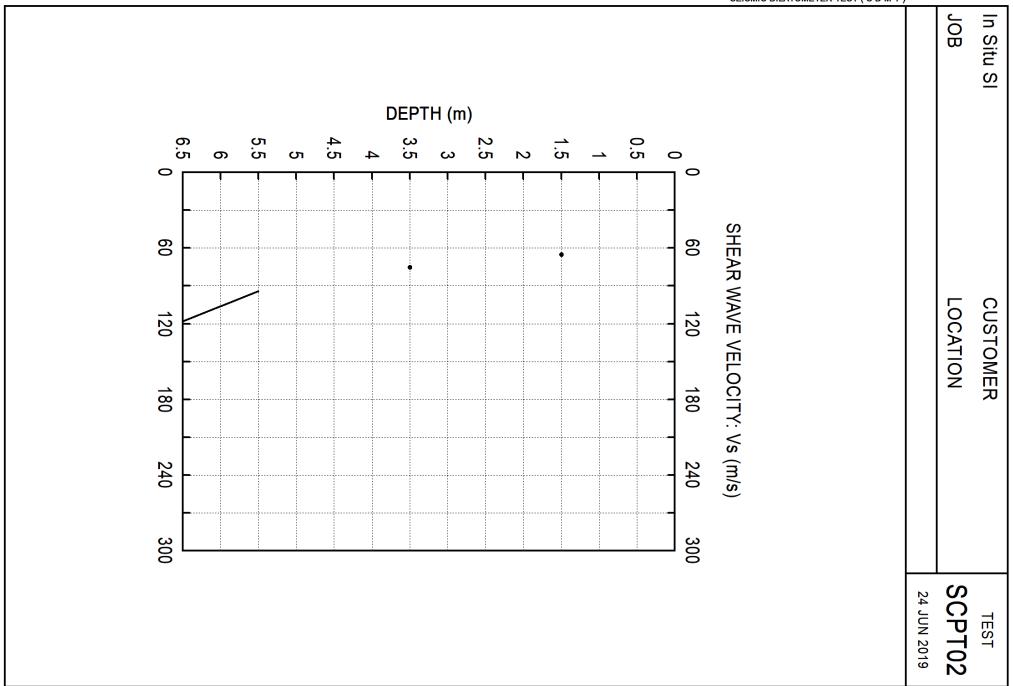
PROJECT: Cardiff Parkway

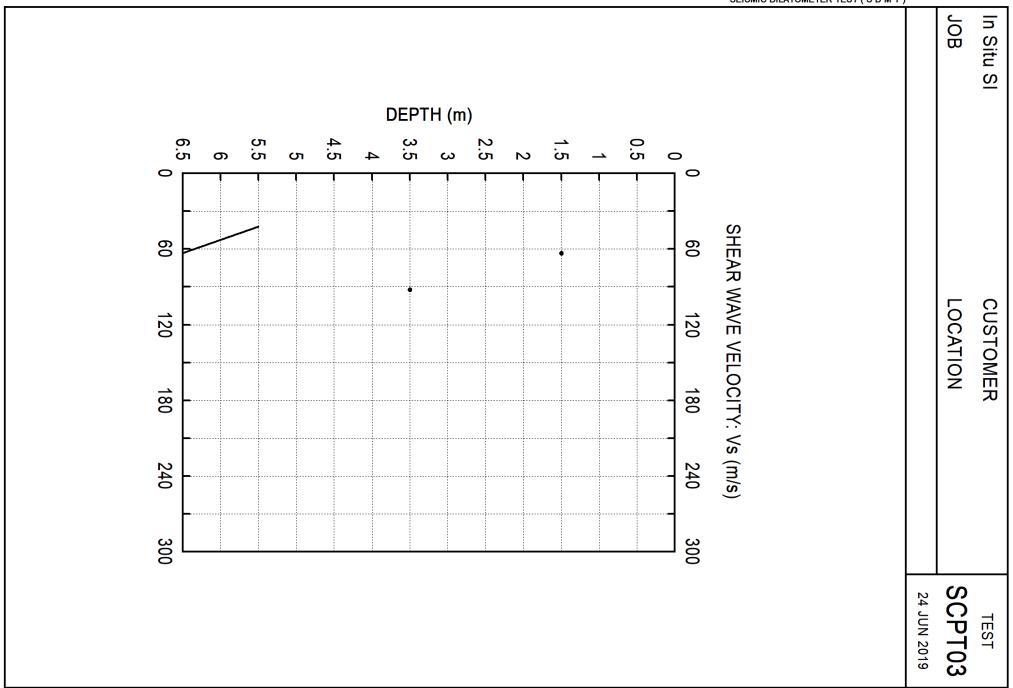
LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325071.900 m **NORTHING** : 180693.600 m **ELEVATION** : 5.100 m OD

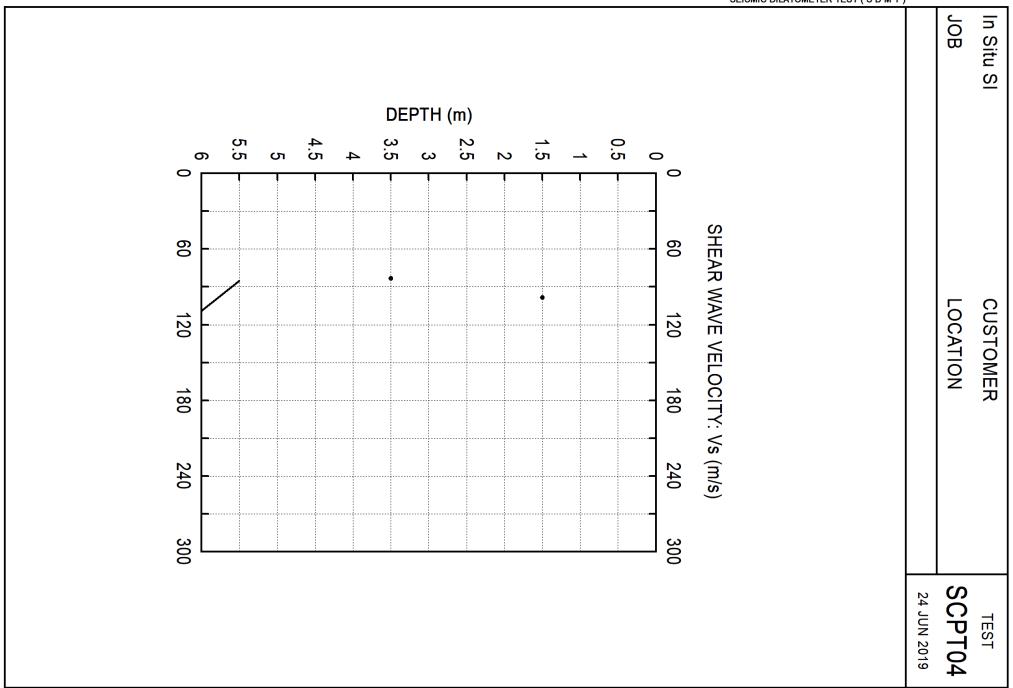
CHECKED BY

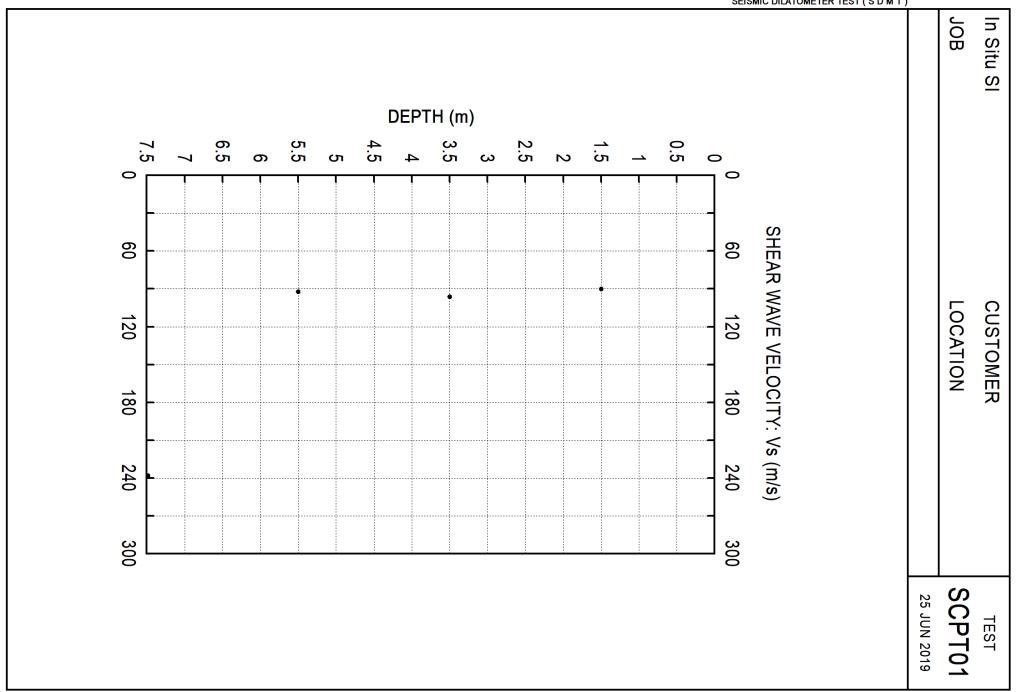
TERMINATION REASON: Refusal

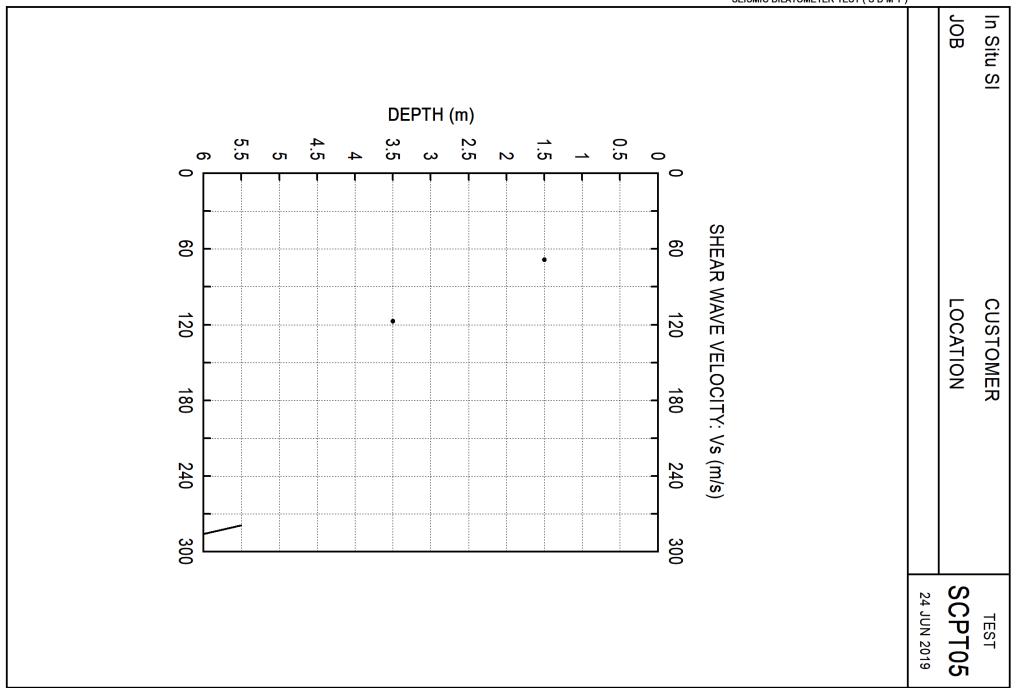

Remark: SHEET STATUS Test refused on total pressure.

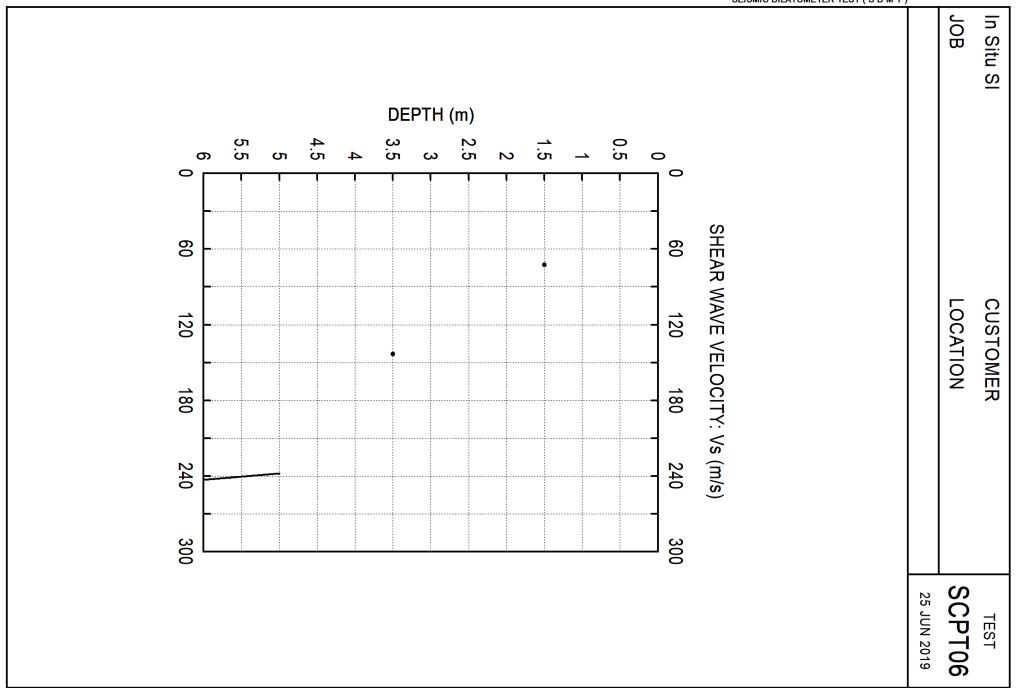

: Final TEST DATE : 17/06/2019 PLOT DATE: 04/07/2019

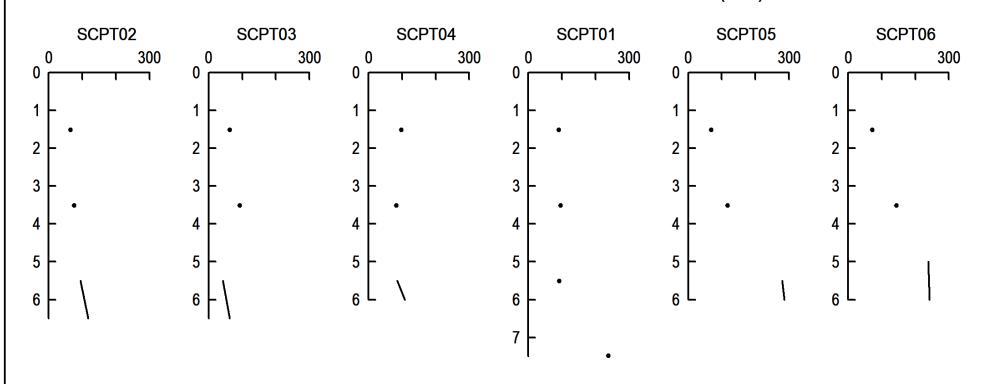

CPT 06

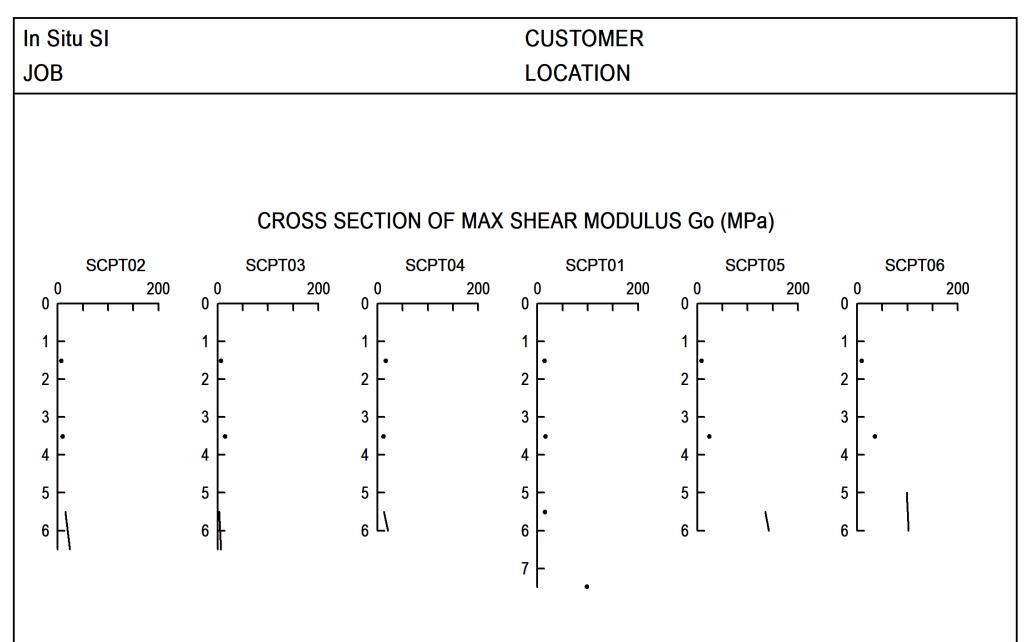

METHOD : ISO 22476-1:2012

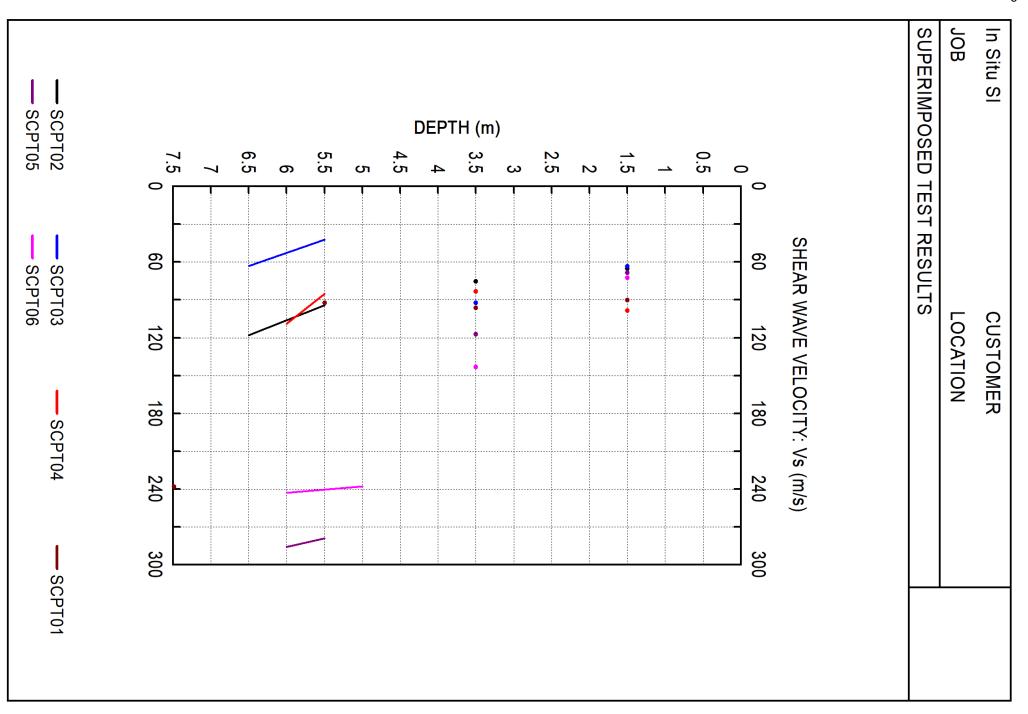

: 1 OF 1

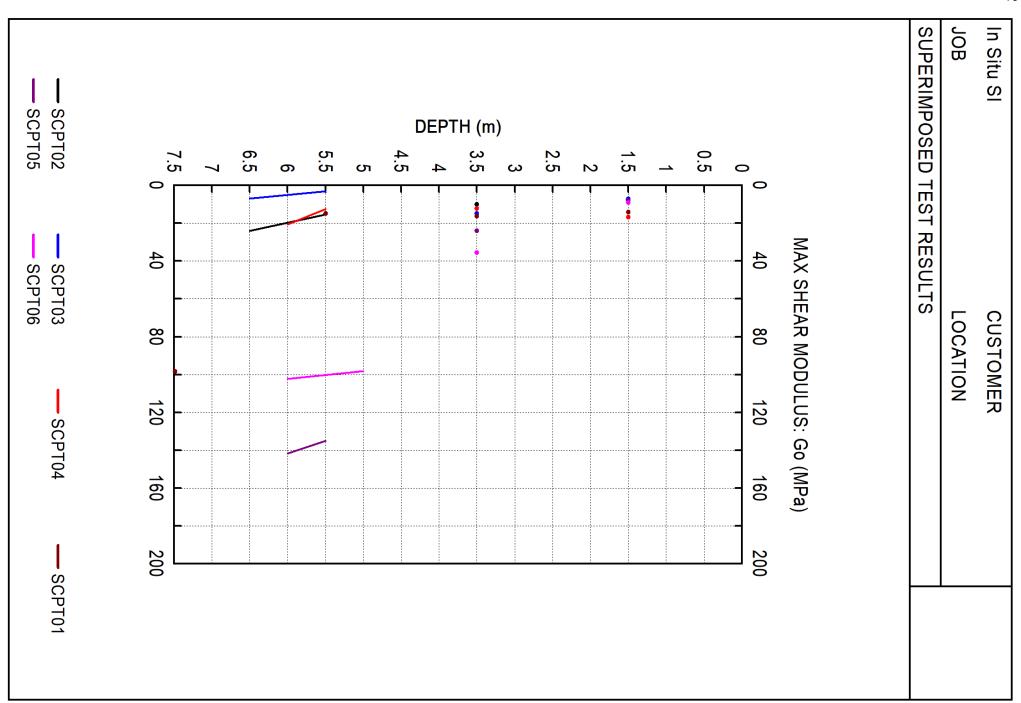












CROSS SECTION OF SHEAR WAVE VELOCITY Vs (m/s)

SCPT02 - Tabular data: Vs, Go, Vs Repeatability

Z	Vs	Go	Rho	Vs Repeatability	Var Coeff.
[m]	[m/s]	[MPa]	[kg/m^3]	[m/s]	[%]
1.50	65	7.3	1733	0,65,64,67	1.99
3.50	75	9.7	1733	74,74,76	1.33
5.50	94	15.3	1733	94,94,93	0.61
6.50	118	24.1	1733	118,119,116	1.09

SCPT03 - Tabular data: Vs, Go, Vs Repeatability

Z	Vs	Go	Rho	Vs Repeatability	Var Coeff.
[m]	[m/s]	[MPa]	[kg/m^3]	[m/s]	[%]
1.50	63	6.9	1733	73,60,61,59	9.01
3.50	92	14.7	1733	91,92,92	0.63
5.50	42	3.1	1733	42,42,42	0.00
6.50	63	6.9	1733	63,63,64	0.92

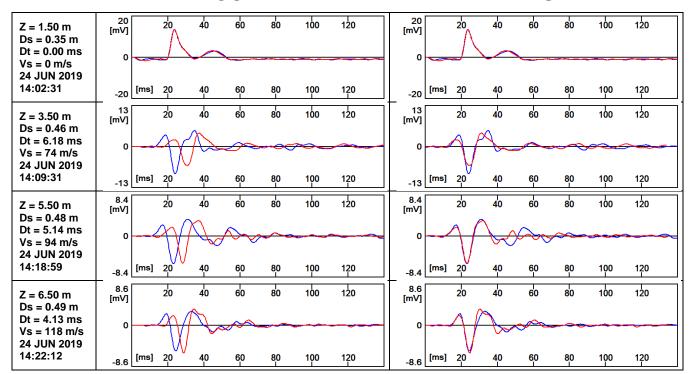
SCPT04 - Tabular data: Vs, Go, Vs Repeatability

	Z	Vs	Go	Rho	Vs Repeatability	Var Coeff.
	[m]	[m/s]	[MPa]	[kg/m^3]	[m/s]	[%]
	1.50	98	16.6	1733	97,97,100	1.44
	3.50	83	11.9	1733	84,83,83	0.70
Ī	5.50	85	12.5	1733	85,83,86	1.52
Ī	6.00	109	20.6	1733	109,110,107	1.18

SCPT01 - Tabular data: Vs, Go, Vs Repeatability

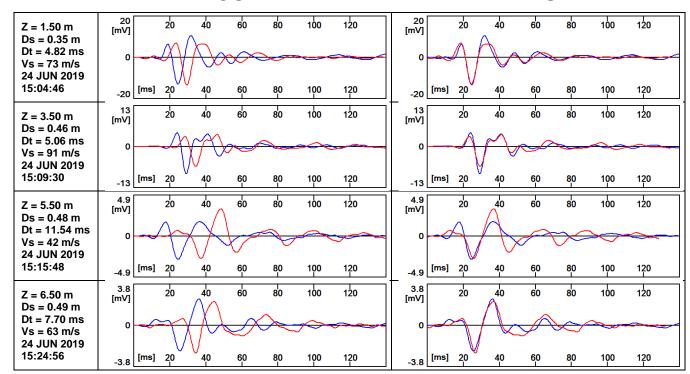
Z	Vs	Go	Rho	Vs Repeatability	Var Coeff.
[m]	[m/s]	[MPa]	[kg/m^3]	[m/s]	[%]
1.50	90	14.0	1733	91,89,89	1.11
3.50	96	16.0	1733	97,95,96	0.85
5.50	92	14.7	1733	94,90,93	1.88
7.50	238	98.2	1733	251,224,246,232	4.53

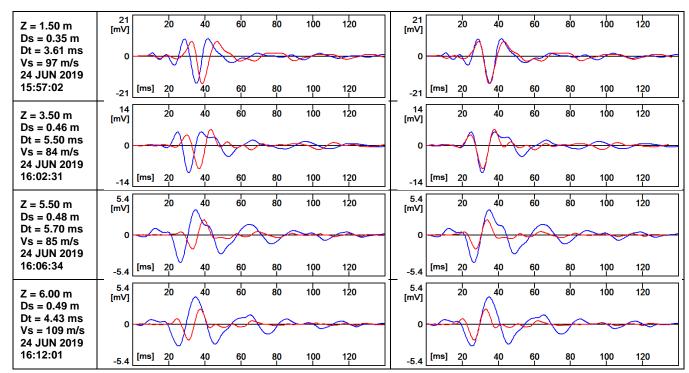
SCPT05 - Tabular data: Vs, Go, Vs Repeatability

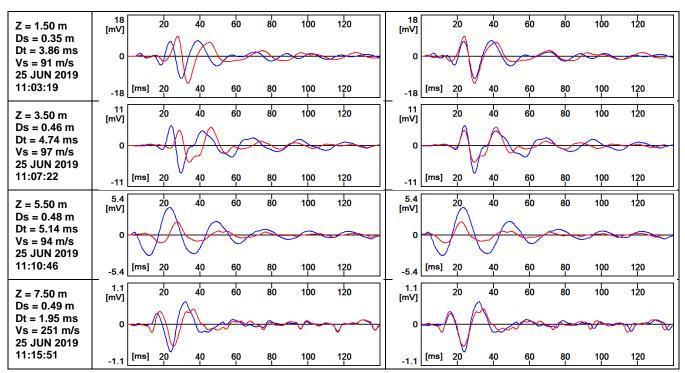

Z	Vs	Go	Rho	Vs Repeatability	Var Coeff.
[m]	[m/s]	[MPa]	[kg/m^3]	[m/s]	[%]
1.50	68	8.0	1733	76,67,66,65	6.49
3.50	117	23.7	1733	122,115,114,116	2.67
5.50	279	135	1733	317,321,250,223,273,288	12.50
6.00	286	142	1733	261,260,325,297	9.48

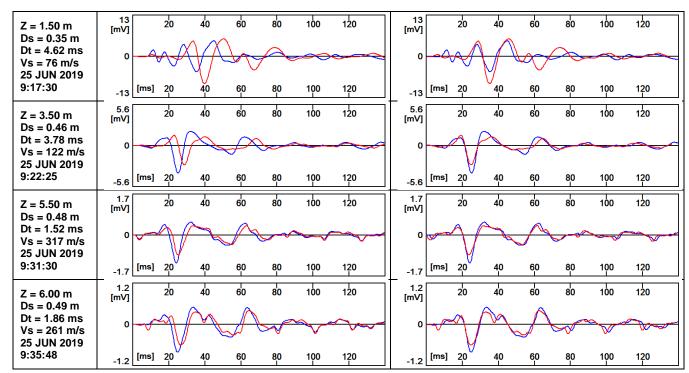
SCPT06 - Tabular data: Vs, Go, Vs Repeatability

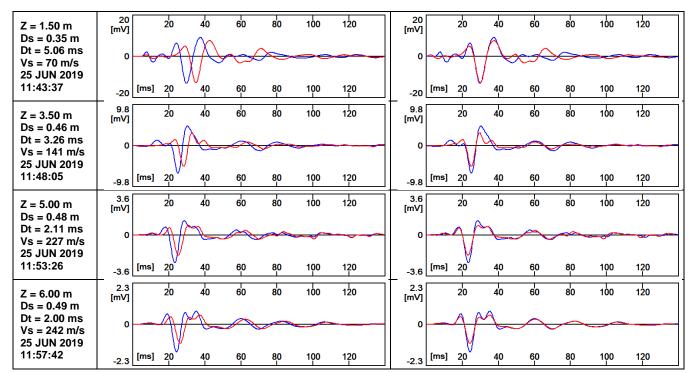
Z	Vs	Go	Rho	Vs Repeatability	Var Coeff.
[m]	[m/s]	[MPa]	[kg/m^3]	[m/s]	[%]
1.50	72	9.0	1733	70,73,72	1.79
3.50	143	35.4	1733	141,144,144	0.99
5.00	238	98.2	1733	227,254,232	4.93
6.00	243	102	1733	242,243,243	0.24


RECORDED


RE-PHASED




RECORDED


RE-PHASED

APPENDIX E Vane Tests

CPT 01

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

LOCATION : Cardiff PROJECT No. : 1190290 **EASTING** : 325239.800 m **NORTHING** : 180759.500 m


ELEVATION : 5.300 m OD

CHECKED BY

TERMINATION REASON: Refusal

Remark: SHEET : 1 OF 1 STATUS : Final Test refused on total pressure.

TEST DATE : 17/06/2019 PLOT DATE: 04/07/2019

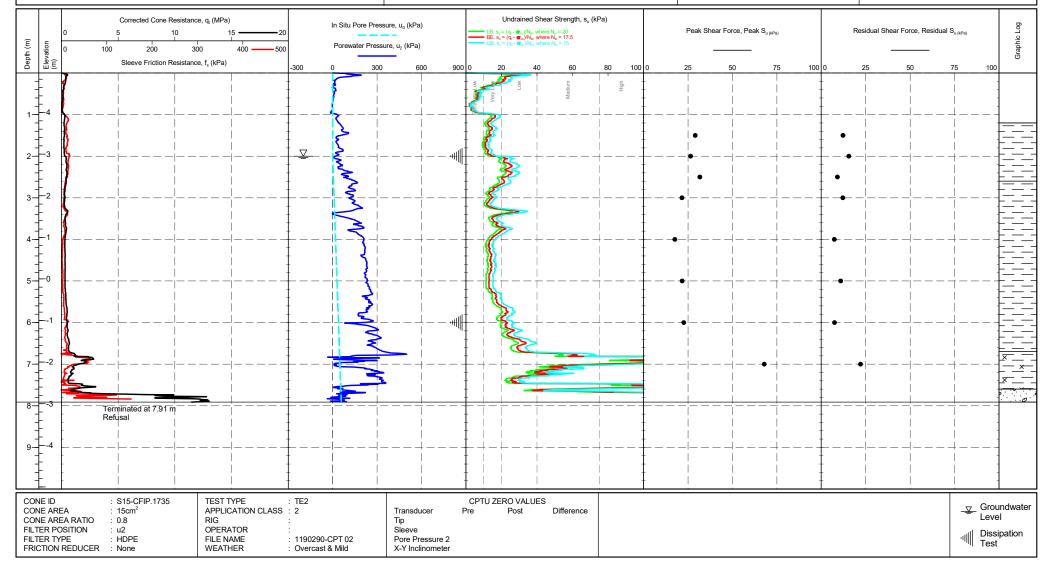
CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325413.600 m **NORTHING** : 180803.000 m : 4.950 m OD **ELEVATION**

CHECKED BY

TERMINATION REASON: Refusal


Remark:

Test refused on inclination.

SHEET : 1 OF 1 STATUS : Final

CPT 02

TEST DATE : 24/06/2019 PLOT DATE: 04/07/2019

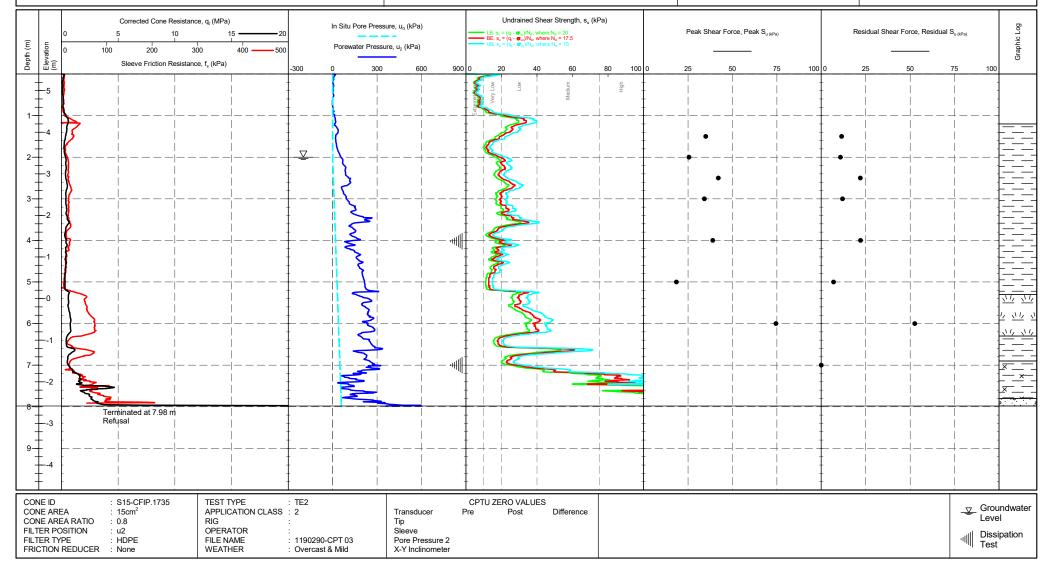
CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325294.200 m **NORTHING** : 180730.200 m **ELEVATION** : 5.400 m OD

CHECKED BY

TERMINATION REASON: Refusal


Remark:

Test refused on total pressure.

SHEET : 1 OF 1 STATUS : Final

CPT 03

TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

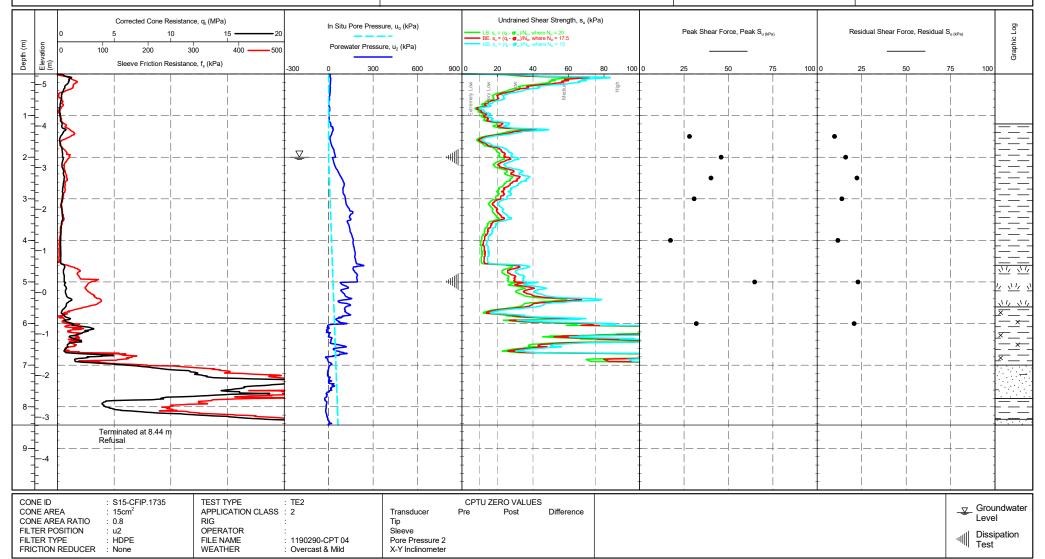
CPT 04

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325195.400 m **NORTHING** : 180664.200 m

ELEVATION : 5.250 m OD


CHECKED BY

TERMINATION REASON: Refusal

Remark: Test refused on total pressure.

SHEET : 1 OF 1 STATUS : Final

TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

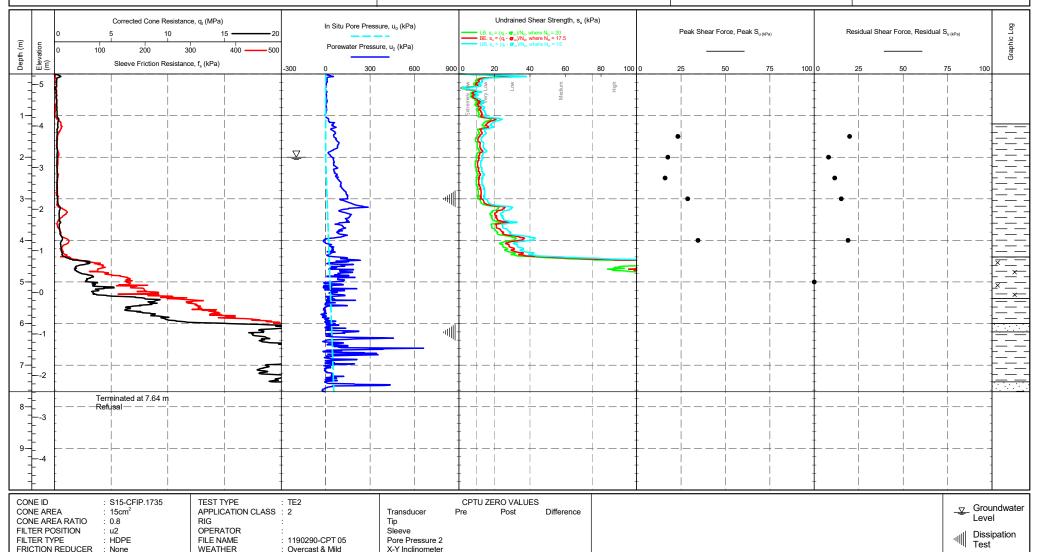
CPT 05

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325097.400 m **NORTHING** : 180591.800 m : 5.250 m OD **ELEVATION**

CHECKED BY


TERMINATION REASON: Refusal

Remark: SHEET STATUS Test refused on total pressure.

: Final TEST DATE : 21/06/2019 PLOT DATE: 04/07/2019

: ISO 22476-1:2012 METHOD

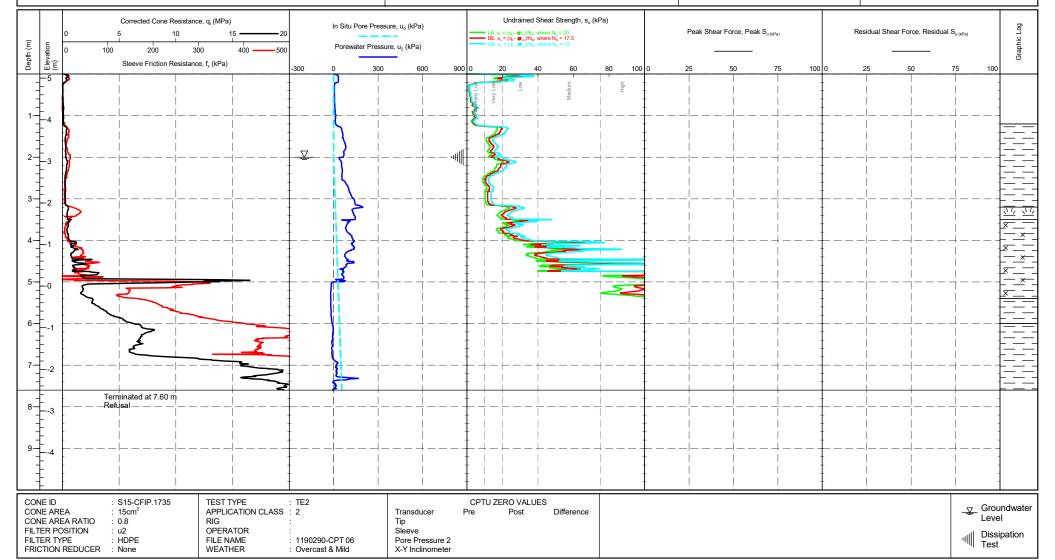
: 1 OF 1

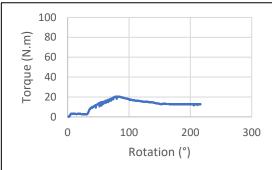
CPT 06

CLIENT : Geotechnical Engineering

PROJECT: Cardiff Parkway

: Cardiff LOCATION PROJECT No. : 1190290 **EASTING** : 325071.900 m **NORTHING** : 180693.600 m **ELEVATION** : 5.100 m OD


CHECKED BY

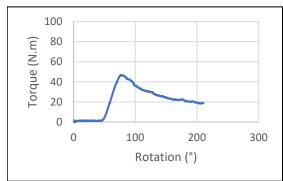

TERMINATION REASON: Refusal

Remark: Test refused on total pressure.

SHEET : 1 OF 1 STATUS : Final

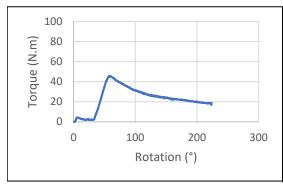
TEST DATE: 17/06/2019 PLOT DATE: 04/07/2019

Turn On Depth	1.50	mbgl	
Rod Friction	2.80	n.M	
Peak Shear Force	17.77	kPa	
Residual Shear Force	9.87	kPa	
Comments			

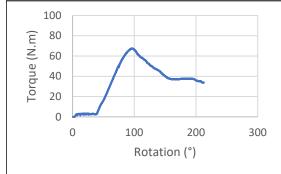

Vane Size: 13x6.5

rdue (N.r	30 30 40 20		
	0	100 Rotation (°)	200

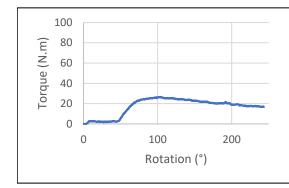
Turn On Depth	2.00	mbgl	
Rod Friction	0.87	n.M	
Peak Shear Force	34.61	kPa	
Residual Shear Force	16.73	kPa	
Comments			

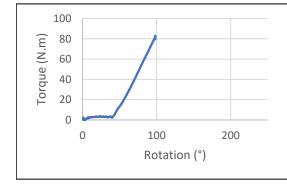

	100					
Œ	80					
z.	60					
Torque (N.m)	40					
Tor	20					
	0	/				
	(0	100	2	200	300
			Rot	ation (°)	

Turn On Depth	2.50	mbgl
Rod Friction	1.57	n.M
Peak Shear Force	54.78	kPa
Residual Shear Force	20.23	kPa
Commen	its	



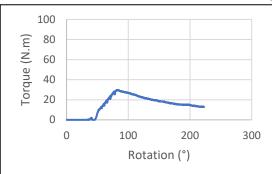
Turn On Depth	3.00	mbgl
Rod Friction	1.24	n.M
Peak Shear Force	45.44	kPa
Residual Shear Force	17.73	kPa


Comments


Turn On Depth	4.00	mbgl	
Rod Friction	2.74	n.M	
Peak Shear Force	42.88	kPa	
Residual Shear Force	13.95	kPa	
Comments			

Turn On Depth	5.00	mbgl	
Rod Friction	2.67	n.M	
Peak Shear Force	64.96	kPa	
Residual Shear Force	31.36	kPa	
Comments			

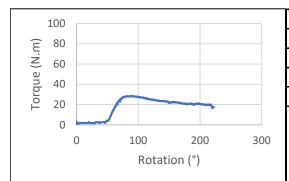
Turn On Depth	6.00	mbgl
Rod Friction	2.40	n.M
Peak Shear Force	23.98	kPa
Residual Shear Force	14.36	kPa
Comments		

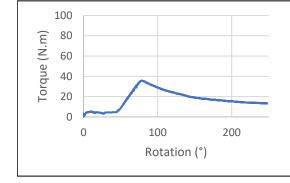


Turn On Depth	7.00	mbgl
Rod Friction	2.91	n.M
Peak Shear Force	>80	kPa
Residual Shear Force		kPa

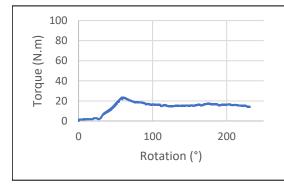
Comments

Max Torque Reached

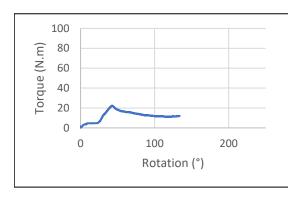

End of test	
Final Turn Depth	7.00m
Reason For Refusal	Refusal on turn


Residual Shear Force	12.22	kPa
B. C. J. Charles	42.22	1.0
Peak Shear Force	29.05	kPa
Rod Friction	0.65	n.M
Turn On Depth	1.50	mbgl

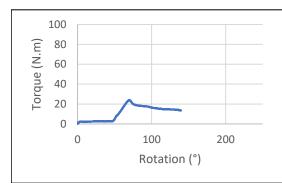
Vane Size: 13x6.5


Comments

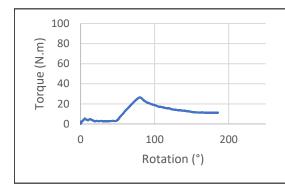
Turn On Depth	2.00	mbgl	
Rod Friction	1.75	n.M	
Peak Shear Force	26.48	kPa	
Residual Shear Force	15.51	kPa	
Comments			



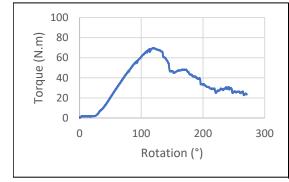
Turn On Depth	2.50	mbgl	
Rod Friction	4.01	n.M	
Peak Shear Force	31.65	kPa	
Residual Shear Force	9.05	kPa	
Comments			


Turn On Depth	3.00	mbgl
Rod Friction	1.82	n.M
Peak Shear Force	21.58	kPa
Residual Shear Force	12.13	kPa

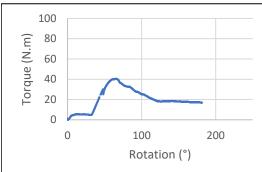
Comments



Residual Shear Force	7.33	kPa
Peak Shear Force	17.57	kPa
Rod Friction	4.63	n.M
Turn On Depth	4.00	mbgl


Comments

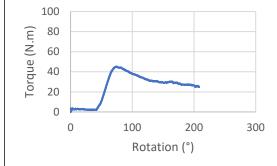
Turn On Depth	5.00	mbgl	
Rod Friction	2.41	n.M	
Peak Shear Force	21.69	kPa	
Residual Shear Force	10.91	kPa	
Comments			


Turn On Depth	6.00	mbgl	
Rod Friction	3.90	n.M	
Peak Shear Force	22.59	kPa	
Residual Shear Force	7.45	kPa	
Comments			

Turn On Depth	7.00	mbgl
Rod Friction	1.56	n.M
Peak Shear Force	67.92	kPa
Residual Shear Force	22.07	kPa

Comments

End of test		
Final Turn Depth	7.00m	
Reason For Refusal	Refusal on tonnage	

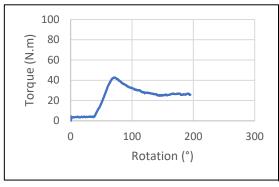

Turn On Depth	1.50	mbgl
Rod Friction	5.49	n.M
Peak Shear Force	34.97	kPa
Residual Shear Force	11.43	kPa

Vane Size: 13x6.5

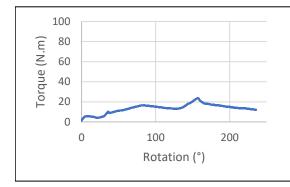
Comments

	100				
Ш	80				
Torque (N.m)	60				
enb.	40				
Tor	20				
	0	لسبم			
		0	100	200	300
			Rota	tion (°)	

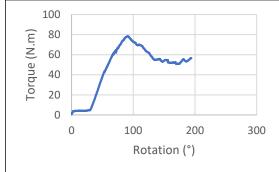
Turn On Depth	2.00	mbgl	
Rod Friction	3.34	n.M	
Peak Shear Force	25.54	kPa	
Residual Shear Force	10.79	kPa	
Comments			

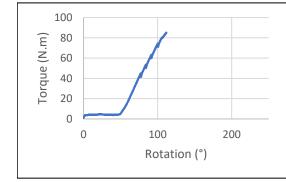


Turn On Depth	2.50	mbgl
Rod Friction	2.94	n.M
Peak Shear Force	42.06	kPa
Residual Shear Force	21.99	kPa
Comments		

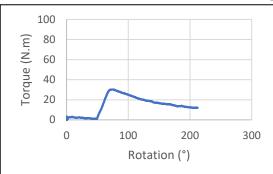

100 80 Torque (N.m) 60 40 20 0 0 100 200 300 Rotation (°)

Rod Friction 3.41 n.M Peak Shear Force 34.22 kPa Positival Shear Force 11.05 kPa	Turn On Depth	3.00	mbgl
	Rod Friction	3.41	n.M
Posidual Shoor Force 11.05 kDa	Peak Shear Force	34.22	kPa
Residual Silear Force 11.95 RPa	Residual Shear Force	11.95	kPa


Comments


Turn On Depth	4.00	mbgl		
Rod Friction	3.73	n.M		
Peak Shear Force38.92kPa				
Residual Shear Force 22.08 kPa				
Comments				

Turn On Depth 5.00 mbgl				
Rod Friction	5.22	n.M		
Peak Shear Force18.46kPa				
Residual Shear Force 6.89 kPa				
Comments				

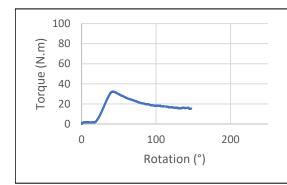

Turn On Depth	6.00	mbgl		
Rod Friction	3.93	n.M		
Peak Shear Force	74.47	kPa		
Residual Shear Force	52.61	kPa		
Comments				

Turn On Depth 7.00 mbgl				
Rod Friction	4.17	n.M		
Peak Shear Force >80 kPa				
Residual Shear Force kPa				
Comments				

Max Torque Reached

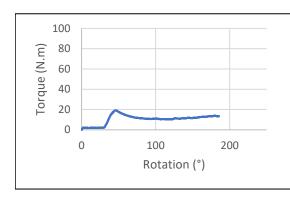
End of test		
Final Turn Depth	7.00m	
Reason For Refusal	Refusal on turn	

Turn On Depth 1.50 mbgl				
Rod Friction 2.23 n.M				
Peak Shear Force28.08kPa				
Residual Shear Force 9.70 kPa				
Comments				

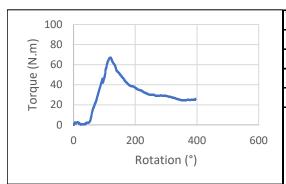

Vane Size: 13x6.5

100				
€ 80				
Ë 60				
(M. W) 60 40 20				
卢 20	—			
0				
	0	100	200	300
		Rota	tion (°)	

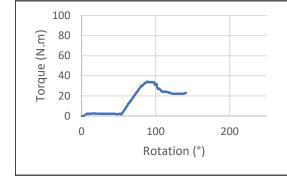
Residual Shear Force	15.97	kPa
Peak Shear Force	0.95 45.86	kPa
Turn On Depth Rod Friction	2.00	mbgl n.M


10	0			
E 8	0			
<u> </u>	0			
Torque (N.m)	0			
р Р 2	0	_/ `		
	0			
	0	100	200	300
		Rotat	ion (°)	

Turn On Depth	2.50	mbgl	
Rod Friction	0.81	n.M	
Peak Shear Force	40.17	kPa	
Residual Shear Force	22.29	kPa	
Comments			


Turn On Depth	3.00	mbgl
Rod Friction	1.55	n.M
Peak Shear Force	30.72	kPa
Residual Shear Force	13.82	kPa

Comments

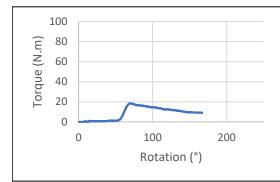


Commonto		
Residual Shear Force	11.59	kPa
Peak Shear Force	17.37	kPa
Rod Friction	1.86	n.M
Turn On Depth	4.00	mbgl

Comments

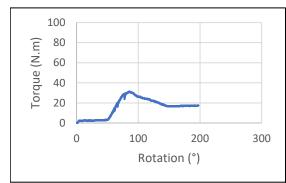
Turn On Depth	5.00	mbgl
Rod Friction	2.42	n.M
Peak Shear Force	64.75	kPa
Residual Shear Force	22.92	kPa
Commer	nts	

Turn On Depth	6.00	mbgl
Rod Friction	2.38	n.M
Peak Shear Force	31.91	kPa
Residual Shear Force	20.73	kPa
Comments		

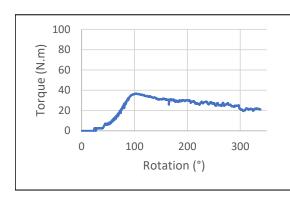

End of test	
Final Turn Depth	6.00m
Reason For Refusal	Refusal on tonnage

Residual Shear Force	19.88	кРа kРа
Peak Shear Force	23.22	kPa
Rod Friction	1.30	n.M
Turn On Depth	1.50	mbgl

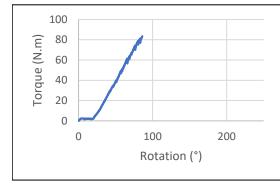
Vane Size: 13x6.5


Comments

Comments				
Residual Shear Force 8.02 kPa				
Peak Shear Force	17.58	kPa		
Rod Friction	1.00	n.M		
Turn On Depth	2.00	mbgl		


100 (E) 80 30 40 20 0 0 100 200 Rotation (°)

Turn On Depth	2.50	mbgl
Rod Friction	1.96	n.M
Peak Shear Force	16.03	kPa
Residual Shear Force	11.49	kPa
Comments		

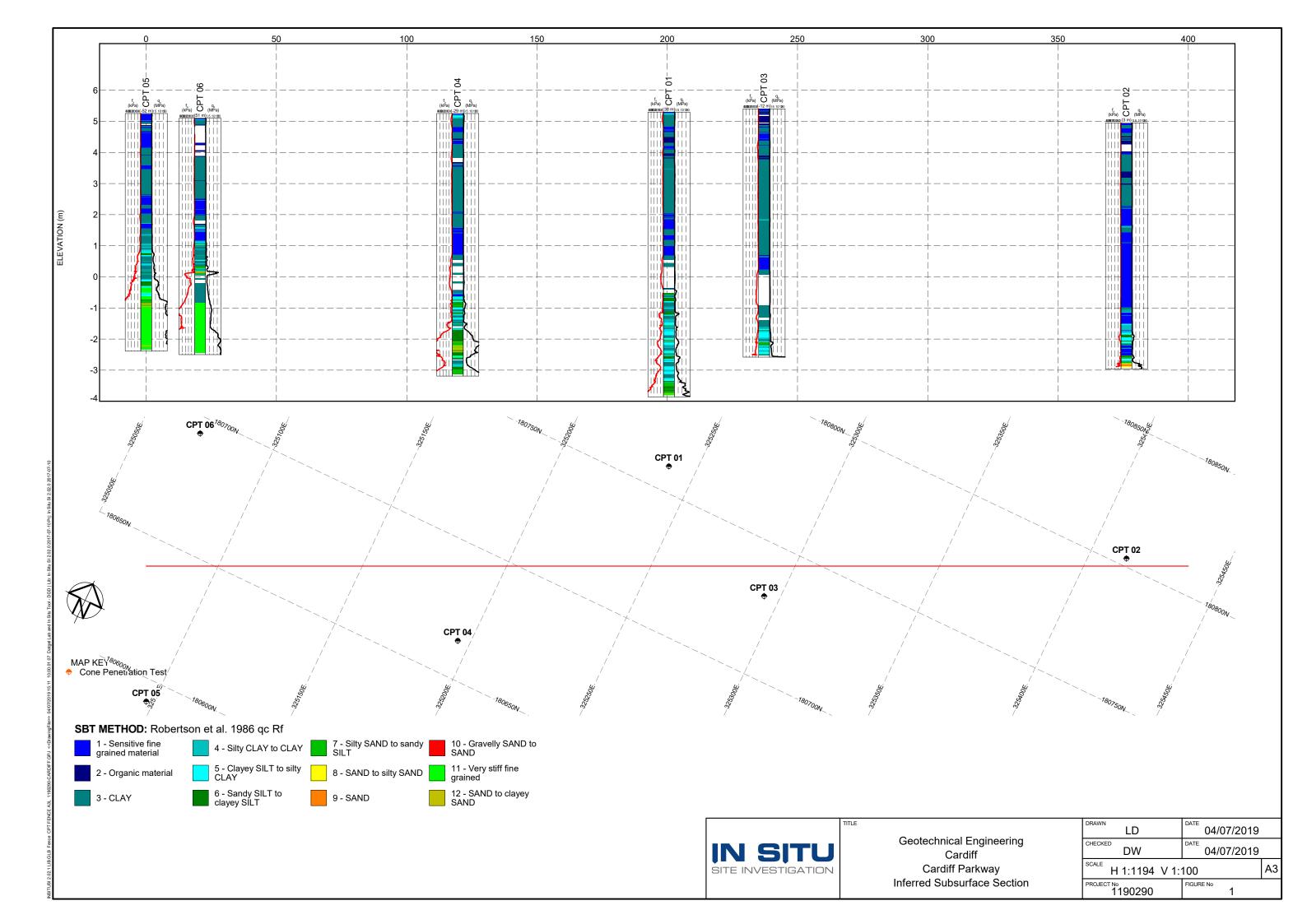


Turn On Depth	3.00	mbgl
Rod Friction	2.32	n.M
Peak Shear Force	28.75	kPa
Residual Shear Force	15.20	kPa

Comments

Turn On Depth	4.00	mbgl	
Rod Friction	2.06	n.M	
Peak Shear Force	34.54	kPa	
Residual Shear Force 18.99 kPa			
Comments			

Turn On Depth	5.00	mbgl	
Rod Friction	2.15	n.M	
Peak Shear Force	>80	kPa	
Residual Shear Force kPa			
Comments			


Max Torque Reached

End of test	
Final Turn Depth	5.00m
Reason For Refusal	Refusal on turn

APPENDIX F Section

IN SITU SITE INVESTIGATION

Unit 23 Hastings Innovation Centre, Highfield Drive St. Leonards on Sea, East Sussex, TN38 9UH, U.K.

Company No.: 6339499 VAT No.: 922 3561 41

APPENDIX C

PHOTOGRAPHS

Borehole: BH01 Box 1: 1.20-5.20m

Borehole: BH01 Box 2: 5.20-8.20m

Borehole: BH02 Box 1: 1.20-4.30m

Borehole: BH02 Box 2: 4.30-6.80m

Borehole: BH02 Box 3: 6.80-9.80m

Borehole: BH02 Box 4: 9.80-12.80m

Borehole: BH03 Box 1: 1.20-5.00m

Borehole: BH03 Box 2: 5.00-8.00m

Borehole: BH03 Box 3: 8.00-11.00m

Borehole: BH04 Box 1: 1.20-7.50m



Borehole: BH04 Box 2: 7.50-10.00m

Borehole: BH04 Box 3: 10.00-13.00m

Borehole: BH04 Box 4: 13.00-16.00m

Borehole: BH05 Box 1: 1.20-4.20m

Borehole: BH05 Box 2: 4.20-6.70m

Borehole: BH05 Box 3: 6.70-9.70m

Borehole: BH05 Box 4: 9.70-12.70m

Borehole: BH05 Box 5: 12.70-15.70m

Borehole: BH05 Box 6: 15.70-18.70m

Borehole: BH05 Box 7: 18.70-21.70m

Borehole: BH06 Box 1: 1.20-4.10m

Borehole: BH06 Box 2: 4.10-6.60m

Borehole: BH06 Box 3: 6.60-9.60m

Borehole: BH06 Box 4: 9.60-12.60m

Borehole: BH07 Box 1: 1.20-8.30m

Borehole: BH07 Box 2: 8.30-11.20m

Borehole: BH07 Box 3: 11.20-14.20m

Borehole: BH07 Box 4: 14.20-17.20m

Borehole: BH07 Box 5: 17.20-20.20m

Borehole: BH07 Box 6: 20.20-23.20m

Borehole: BH07 Box 7 23.20-26.20m

Borehole: BH08 Box 1 1.20-7.00m

Borehole: BH08 Box 2 7.00-10.00m

Borehole: BH08 Box 3 10.00-13.00m

Borehole: BH08 Box 4 13.00-16.00m



Borehole: BH08 Box 5 16.00-19.00m

Borehole: BH08 Box 6 19.00-22.00m

Borehole: BH08 Box 7 22.00-25.00m

Borehole: BH09 Box 1: 1.20-5.20m

Borehole: BH09 Box 2: 5.20-8.20m

Borehole: BH09 Box 3: 8.20-11.20m

Borehole: BH09 Box 4: 11.20-14.20m

Borehole: BH09 Box 5: 14.20-17.20m

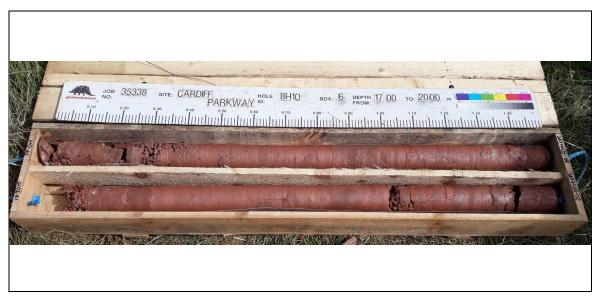
Borehole: BH09 Box 6: 17.20-20.20m

Borehole: BH09 Box 7: 20.20-23.20m

Borehole: BH10 Box 1: 1.20-4.20m

Borehole: BH10 Box 2: 4.20-6.70m

Borehole: BH10 Box 3: 6.70-9.70m



Borehole: BH10 Box 4: 9.70-14.00m

Borehole: BH10 Box 5: 14.00-17.00m

Borehole: BH10 Box 6: 17.00-20.00m

Borehole: BH10 Box 7: 20.00-23.00m

Borehole: BH10 Box 8: 23.00-26.00m

Borehole: BH10 Box 9: 26.00-26.70m

Borehole: BH11 Box 1: 1.20-4.20m

Borehole: BH11 Box 2: 4.20-6.70m

Borehole: BH11 Box 3: 6.70-9.70m

Borehole: BH11 Box 4: 9.70-12.40m

Borehole: BH11 Box 5: 12.40-15.40m

Trial Pit: TP05

Trial Pit: TP05

Trial Pit: TP05

Trial Pit: TP06

Trial Pit: TP06

Trial Pit: TP06

Trial Pit: TP07

Trial Pit: TP07

Trial Pit: TP07

Trial Pit: TP08

Trial Pit: TP08

Trial Pit: TP08

Trial Pit: TP09

Trial Pit: TP09

Trial Pit: TP09

APPENDIX D

LABORATORY TESTING

GEOTECHNICAL ENGINEERING LIMITED

Version No. 3

For the attention of Edward Crimp/James Taylor Page No. 1 of 36

Date of Issue 13/08/2019

TEST REPORT

PROJECT/SITE	CARDIFF PARKWAY INITIAL GROUND INVESTIGATION	Samples received	24/06/2019
GEL REPORT NUMBER	35338	Schedule received	24/06/2019
Your ref/PO:		Testing commenced	26/06/2019
Test report refers to	Schedule A	Status	Final

SUMMARY OF RESULTS ATTACHED

TEST METHOD & DESCRIPTION	QUANTITY	ACCREDITED
		TEST
BS EN ISO 17892-1: 2014:5. Water Content	10	YES
BS1377: Part 2: 1990:4.2-4.4&5.2-5.4, Liquid & Plastic Limits	9	YES
BS EN ISO 17892-4: 2016: 5.2, Particle Size Distribution - Wet Sieve	7	YES
BS EN ISO 17892-4: 2016: 5.4, Particle Size Distribution - Pipette	6	YES
BS1377: Part 5: 1990:3, Consolidation	2	YES
BS1377: Part 7: 1990:8&9, Undrained Triaxial Compression	3	YES
ISRM: 2007: Point Load Strength Test	3	YES
Organic Matter Content (Subcontracted)	3	YES
BRE SD1 Suite (Subcontracted)	6	YES/NO

Remarks

This report may not be partially reproduced without written permission from this laboratory.

Approved Signatories:

W Jones (Laboratory Manager) E Crimp (Senior Engineer)

J Hanson (Director) N Parry (Director)

Doc TR01 Rev No. 20 Revision date 09/10/17 DC:JH

Geotechnical Engineering Ltd

Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

Registered number: 00700739 VAT Number: 682 5857 89 www.geoeng.co.uk

geotech@geoeng.co.uk TEL: 01452 527743 Fax: 01452 729314

Payments: Geotechnical Engineering Limited **Sort code**: 16-22-11 **Bank account**: 11125135

LIQUID AND PLASTIC LIMITS

BS.1377: PART 2: 1990: 4 and 5

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

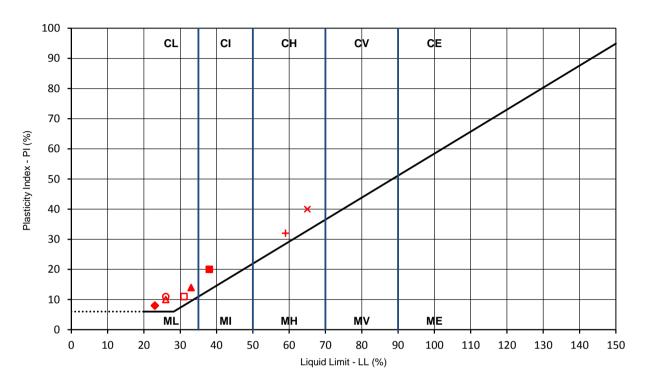
borehole	orehole sample		specimen	specimen	fraction	liquid	plastic			
/trial pit	no./type	depth	depth	water content	preparation and test	>0.425 mm	limit	limit	index	description and remarks
no.		(m)	(m)	(2.1)	method		(%)	(%)	(%)	addenption and remaine
				(%)		(%)				
BH01	3B	1.00	1.00	22.5	BXE	13	31	20	11	Orangish brown slightly gravelly slightly
										sandy silty CLAY
BH01	7UT	2.20	2.20	13.2	BXE	31	23	NP		Brown silty very gravelly SAND
BH01	12UT	4.20	4.55	14.9	BXE	48	26	16	10	Brown slightly sandy gravelly silty CLAY
BH02	2B	0.60	0.60	31.9	BXE	0	65	25	40	Greyish brown slightly sandy silty CLAY
2.102		0.00	0.00	00	27.2	ŭ	00			end, end, end, end, end, end, end, end,
PHOS	71 IT	2 20	2.45	GE O	DVE	1	E0	27	32	Crovish brown slightly condy silty organic
BH02	7UT	2.20	2.45	65.9	BXE	ı	59	27	32	Greyish brown slightly sandy silty organic CLAY with rare wood fragments
										-
BH02	21D	6.20	6.20	12.6	BXE	26	26	15	11	Reddish brown slightly sandy slightly gravelly
										silty CLAY
BH03	4D	0.60	0.60	32.9	E					Grey and brown mottled orange slightly
										gravelly slightly sandy silty CLAY
BH03	7UT	1.20	1.50	18.4	BXE	11	38	18	20	Brown mottled grey slightly gravelly slightly
										sandy silty CLAY
BH03	14UT	3.20	3.45	14.0	BXE	19	23	15	8	Brown mottled grey slightly gravelly sandy
5.100	1101	0.20	0.10	1 1.0	BAL	10	20	'	Ŭ	silty CLAY
BH03	21D	4.80	4.80	8.8	BXE	28	33	19	14	Purplish brown mottled grey slightly sandy
БПОЭ	210	4.00	4.00	0.0	DVE	20	აა	19	14	slightly gravelly silty CLAY
general rema	ul.a									

general remarks

natural water content determined in accordance with BS EN ISO 17892 - 1 : 2014 (unless specified)

NP denotes non plastic

denotes sample tested is smaller than that which is recommended in accordance with BS1377 or BS EN ISO 17892


specimen preparation		test method	CONTRACT	CHECKED
A - as received	D - oven dried (60°C)	X - cone penetrometer (test 4.3)		
B - washed on 0.425mm sieve	E - oven dried (105°C)	Y - cone penetrometer (test 4.4)	35338	TB
C - air dried	F - not known	Z - casagrande apparatus (test 4.5)		

Geotechnical Engineering Limited ATTERBERG LINE PLOT

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

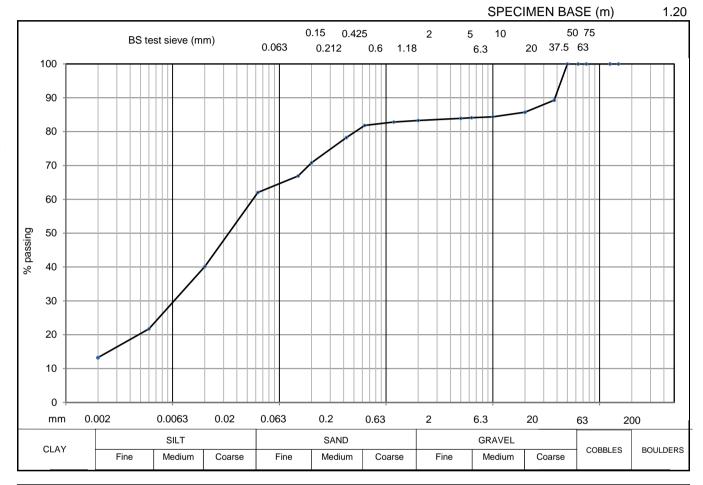
SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

	BH/TP No.	depth (m)	LL	PL	PI	remarks
	BH01	1.00	31	20	11	
	BH01	2.20	23	NP		
Δ	BH01	4.55	26	16	10	
×	BH02	0.60	65	25	40	
+	BH02	2.45	59	27	32	
0	BH02	6.20	26	15	11	
	BH03	1.50	38	18	20	
•	BH03	3.45	23	15	8	
A	BH03	4.80	33	19	14	

CONTRACT	CHECKED
35338	ТВ

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH01

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 3B

DESCRIPTION Orangish brown slightly gravelly slightly sandy silty CLAY

SPECIMEN TOP (m) 1.00

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	13						
SILT	49	150		5	84	20	40
SILT & CLAY	62						
SAND	21	75		2	83	6	22
GRAVEL	17						
COBBLE & BOULDER	0	63		1.18	83	2	13
test method(s)	5.2 & 5.4	50	100	0.63	82		
test method							
		37.5	89	0.425	78		
5.2 - sieving							
		20	86	0.2	71		
5.3 - sedimentation by hy	drometer						
		10	84	0.15	67		
5.4 - sedimentation by pipette							
		6.3	84	0.063	62		
remarks						ONTRACT	CHECKED

remarks
denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892
Particle density assigned an assumed value of 2.70 Mg/m3

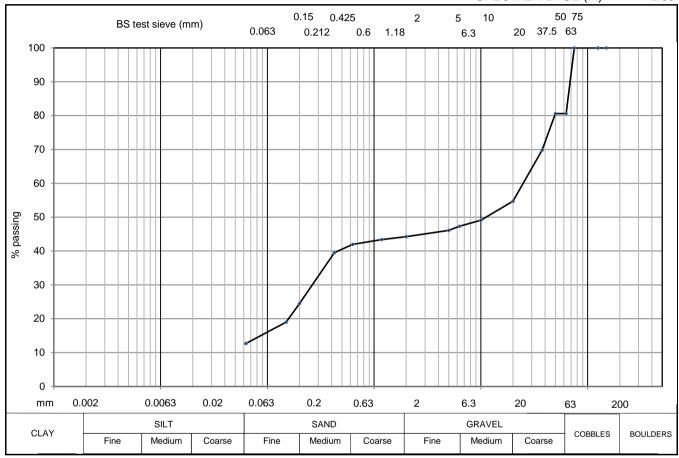
CONTRACT
CHECKED

35338
TB

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH01

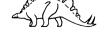

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 7UT

SAMPLE DEPTH (m) 2.20

DESCRIPTION Brown silty very sandy GRAVEL with medium cobble content

SPECIMEN TOP (m) 2.20

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY							
SILT		150		5	46	20	
SILT & CLAY	13						
SAND	32	75	100	2	44	6	
GRAVEL	36						
COBBLE & BOULDER	19	63	81	1.18	43	2	
test method(s)	5.2	50	81	0.63	42		
test method		1					
		37.5	70	0.425	39		
5.2 - sieving							
		20	55	0.2	24		
5.3 - sedimentation by hy	drometer						
		10	49	0.15	19		
5.4 - sedimentation by pipette							
		6.3	47	0.063	13		
remarks						ONTRACT	CHECKED


remarks
denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892
Particle density assigned an assumed value of 2.70 Mg/m3

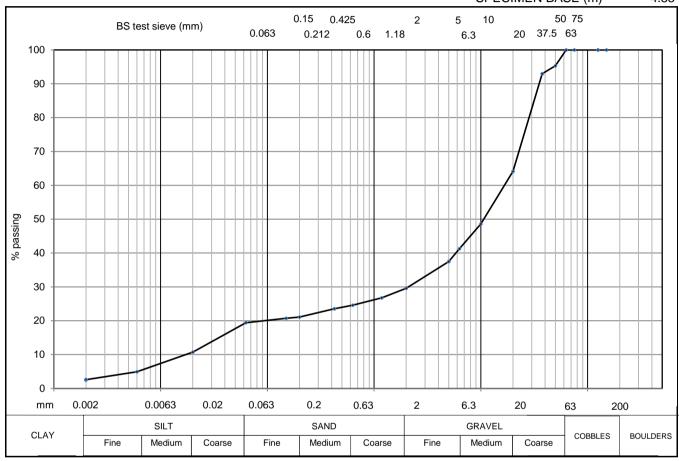
CONTRACT
CHECKED

35338
TB

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4: 2016: 5

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH01


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 12UT

SAMPLE DEPTH (m) 4.20

DESCRIPTION Reddish brown sandy silty GRAVEL

SPECIMEN TOP (m) 4.20

SPECIMEN BASE (m) 4.55

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	3						
SILT	17	150		5	37	20	11
SILT & CLAY	19						
SAND	10	75		2	30	6	5
GRAVEL	70						
COBBLE & BOULDER	0	63	100	1.18	27	2	3
test method(s)	5.2 & 5.4	50	95	0.63	25		
test method							
		37.5	93	0.425	24		
5.2 - sieving							
		20	64	0.2	21		
5.3 - sedimentation by hy	drometer						
		10	49	0.15	21		
5.4 - sedimentation by pipette							
		6.3	41	0.063	19		
romarke	•		•	•	(ONTDACT	CHECKED

remarks
denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892
Particle density assigned an assumed value of 2.70 Mg/m3

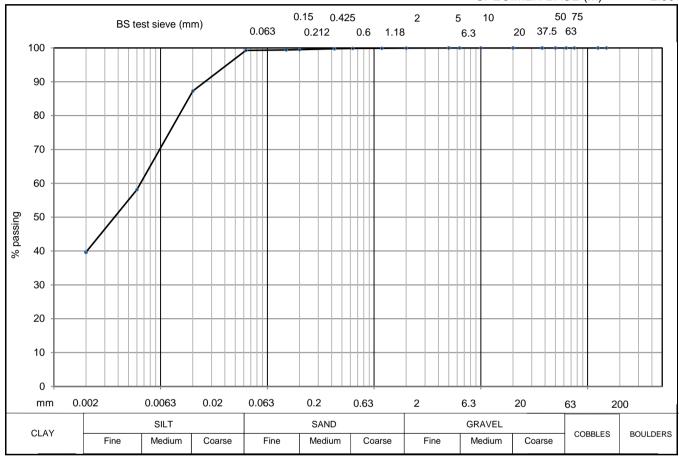
CHECKED

35338
TB

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH02


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 7UT

SAMPLE DEPTH (m) 2.20

DESCRIPTION Greyish brown slightly sandy silty organic CLAY

SPECIMEN TOP (m) 2.47

SPECIMEN BASE (m) 2.50

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	40						
SILT	60	150		5	100	20	87
SILT & CLAY	99						
SAND	1	75		2	100	6	58
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	40
test method(s)	5.2 & 5.4	50		0.63	100		
test method							
		37.5		0.425	100		
5.2 - sieving							
		20		0.2	99		
5.3 - sedimentation by hy	drometer						
		10		0.15	99		
5.4 - sedimentation by pipette							
		6.3		0.063	99		
remarks						'ONTRACT	CHECKED

remarks
denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892
Particle density assigned an assumed value of 2.70 Mg/m3

CONTRACT
CHECKED

35338
TB

content

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4: 2016: 5

CLIENT BH/TP No. BH02 CARDIFF PARKWAY DEVELOPMENTS LIMITED 17L SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 4.50 SAMPLE DEPTH (m) DESCRIPTION Brown very clayey very sandy GRAVEL with medium cobble SPECIMEN TOP (m) 4.50

SPECIMEN BASE (m) 5.30 50 75 0.15 0.425 5 BS test sieve (mm) 0.063 20 37.5 63 0.212 0.6 1.18 6.3 100 90 80 70 60 50 40 30 20 10 0 mm 0.002 0.0063 0.02 0.063 0.2 0.63 6.3 20 63 200 SILT SAND GRAVEL CLAY COBBLES BOULDERS Medium Coarse Fine Medium Coarse Fine Medium Coarse

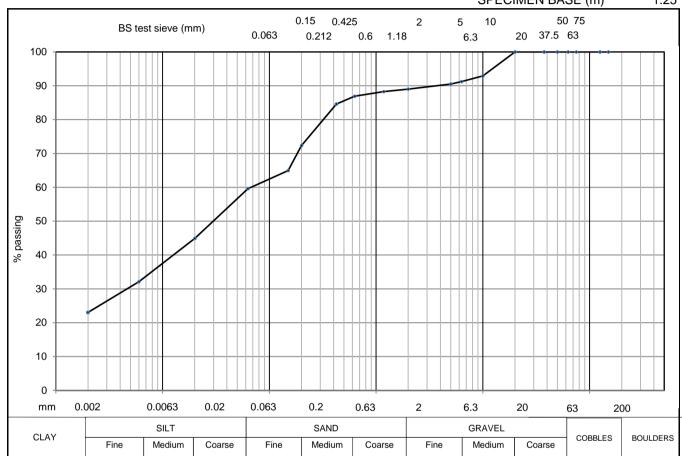
soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	9						
SILT	19	150		5	64	20	22
SILT & CLAY	29						
SAND	31	75	100	2	60	6	15
GRAVEL	22						
COBBLE & BOULDER	18	63	82	1.18	58	2	9
test method(s)	5.2 & 5.4	50	82	0.63	56		
test method							
		37.5	82	0.425	55		
5.2 - sieving							
		20	75	0.2	45		
5.3 - sedimentation by hy	drometer						
		10	68	0.15	36		
5.4 - sedimentation by pipette							
		6.3	66	0.063	29		
remarks						CONTRACT	CHECKE

remarks			CONTRACT	CHECKED
# denotes sample tested is smaller than that whi Particle density assigned an assumed value of 2	d in accordance wit	h BS EN 17892	35338	ТВ

PARTICLE SIZE DISTRIBUTION

DESCRIPTION Brown mottled grey slightly gravelly slightly sandy silty CLAY

BS EN ISO 17892 - 4: 2016: 5



CLIENT BH/TP No. **BH03** CARDIFF PARKWAY DEVELOPMENTS LIMITED 7UT SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 1.20

SAMPLE DEPTH (m)

SPECIMEN TOP (m) 1.20

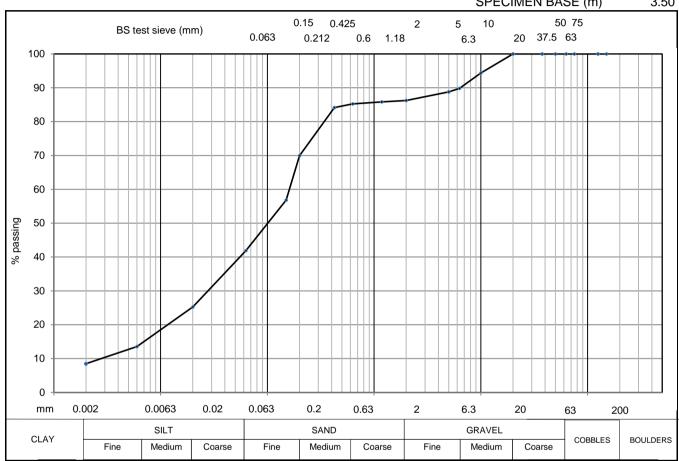
SPECIMEN BASE (m) 1.25

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	23						
SILT	37	150		5	90	20	45
SILT & CLAY	60						
SAND	29	75		2	89	6	32
GRAVEL	11						
COBBLE & BOULDER	0	63		1.18	88	2	23
test method(s)	5.2 & 5.4	50		0.63	87		
test method							
		37.5		0.425	85		
5.2 - sieving							
		20	100	0.2	72		
5.3 - sedimentation by hyd	drometer						
		10	93	0.15	65		
5.4 - sedimentation by pip	ette						
		6.3	91	0.063	60		
romarke					-		CHECKED

CONTRACT CHECKED # denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892 Particle density assigned an assumed value of 2.70 Mg/m3 35338 **TB**

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4: 2016: 5



3.47

CLIENT BH/TP No. **BH03** CARDIFF PARKWAY DEVELOPMENTS LIMITED 14UT SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE SAMPLE DEPTH (m) 3.20 DESCRIPTION Light brown and grey slightly gravelly sandy clayey SILT

> SPECIMEN BASE (m) 3.50

SPECIMEN TOP (m)

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	9						
SILT	33	150		5	89	20	25
SILT & CLAY	42						
SAND	44	75		2	86	6	14
GRAVEL	14						
COBBLE & BOULDER	0	63		1.18	86	2	8
test method(s)	5.2 & 5.4	50		0.63	85		
test method							
		37.5		0.425	84		
5.2 - sieving							
		20	100	0.2	70		
5.3 - sedimentation by hy	drometer						
		10	94	0.15	57		
5.4 - sedimentation by pip	ette						
		6.3	90	0.063	42		
remarks		-		•	С	ONTRACT	CHECKED

denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892 Particle density assigned an assumed value of 2.70 Mg/m3 35338 **TB**

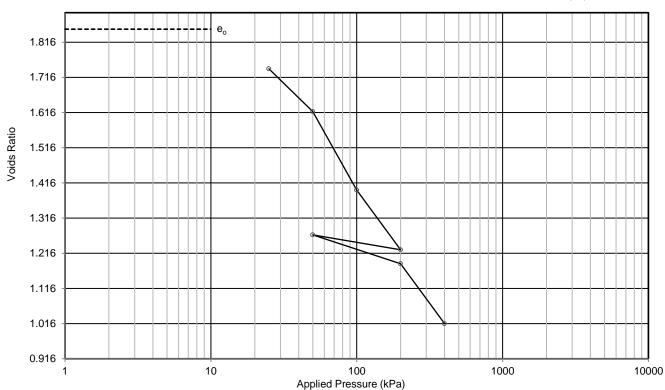
DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

BH/TP No.

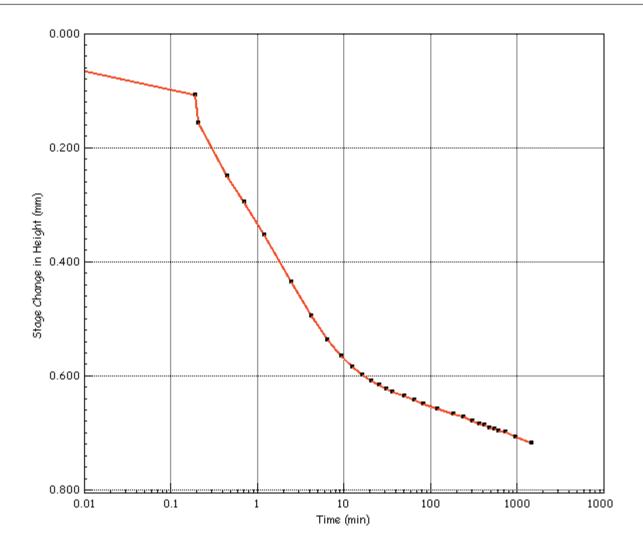
BH02

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

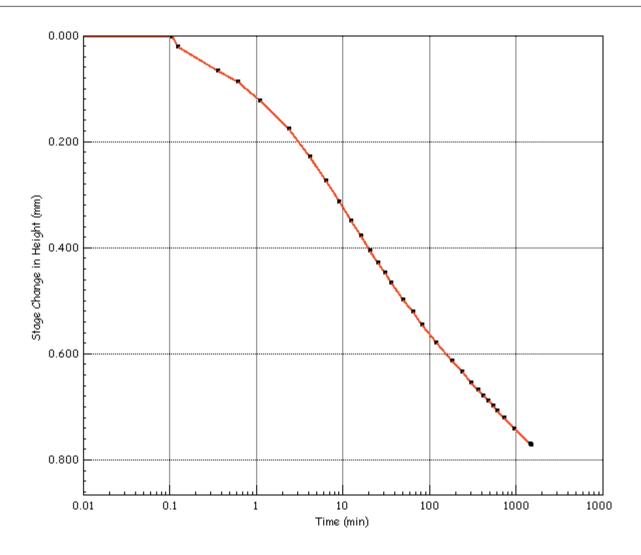

SAMPLE No./TYPE

7UT

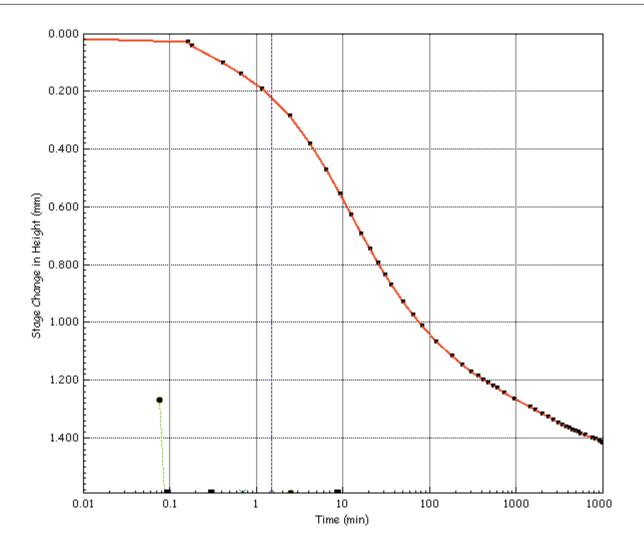
DESCRIPTION Greyish brown slightly organic CLAY with rare wood fragments


SPECIMEN DEPTH (m)

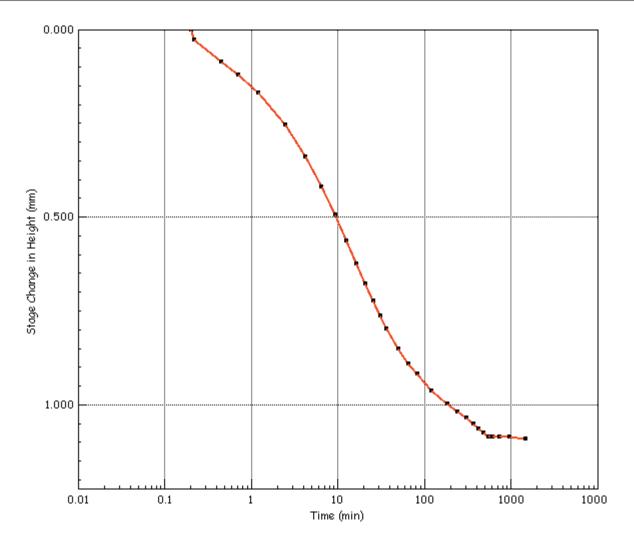
2.45


test and sample details			test results				
			pressure	voids	laboratory c	oefficient	s of
specimen diameter	mm	63.55	stage	ratio	compressibility	consol	idatior
specimen height	mm	17.79	(kPa)		mv	Cv	Cse
nitial moisture content	%	68.7	(KFa)		(m2/MN)	(m2	2/yr)
inal moisture content	%	40.7					
nitial bulk density	Mg/m3	1.60	25	1.740	1.6	2.7	
nitial dry density	Mg/m3	0.95	50	1.619	1.8	0.56	
nitial voids ratio		1.853	100	1.396	1.7	0.42	0.0
nitial degree of saturation	%	100	200	1.226	0.71	0.36	
article density	Mg/m3	#2.70	50	1.268	0.13		
welling pressure	kPa	N/A	200	1.186	0.24	1.2	
			400	1.016	0.39	0.34	
o'o to P'o +100 kPa		-					
aboratory temperature	оС	20 ± 2					
nethod of time fitting		root time					
emarks # denotes particle de	ensity has been ass	igned an assume	d value		CONTRACT	CHE	CKE
load frame correction	ns applied						_
					35338	T	В

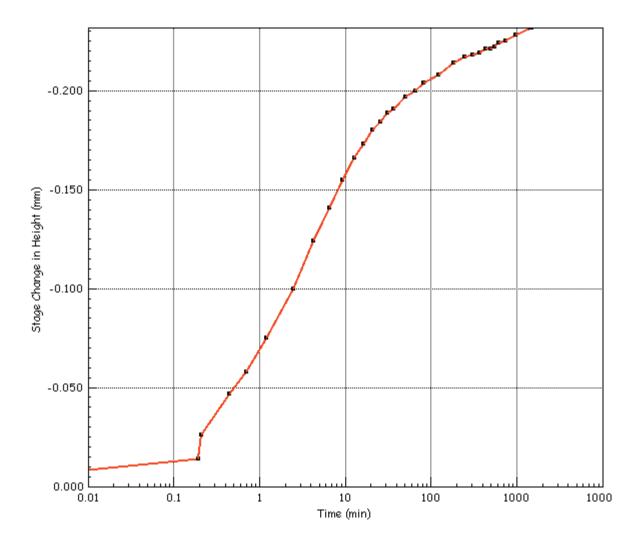
	Vertical Stress	σ'	i	(kPa)	25
	Initial Temperature	T i		(oC)	20.0
	Frame Correction	Li	ORR	(mm)	0.014
	Height Settlement	Δι		(mm)	0.703
	Voids Ratio	e f			-0.163


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 7	
- m		DO 1077 - 0 : 1000	. Olause o	Database: .\SQLI	EXPRESS \ GEL	
2000 7 D	Site Reference			Test Date	01/07/2019	
SHOW IN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH02	
	Operator	TA/JT/JG	Checked *		Approved	*

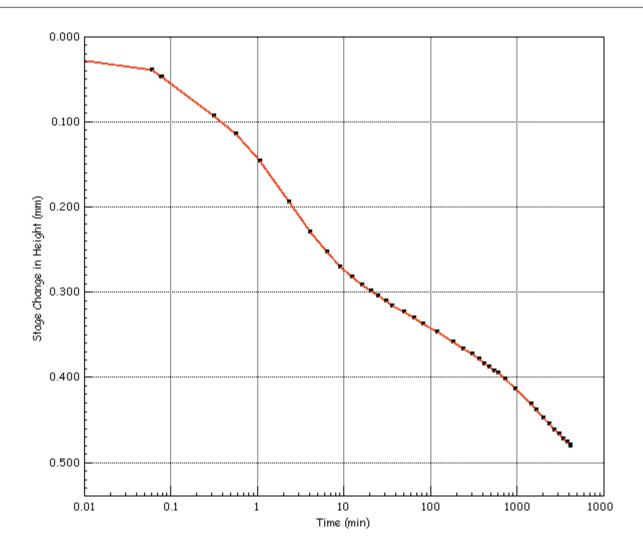
Vertical Stress	σ'i	(kPa)	50
Initial Temperature	Τi	(oC)	20.0
Frame Correction	Lcorr	(mm)	0.026
Height Settlement	ΔLs	(mm)	1.462
Voids Ratio	ef		-0.196


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 7	
		DO 1077 - 0 : 1000	. Olduse o	Database: .\SQLE	EXPRESS \ GEL	
1 AST 7 7 2	Site Reference			Test Date	01/07/2019	
A SHEW SA	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	'AY	Borehole	BH02	
	Operator	TA/JT/JG	Checked *		Approved	*

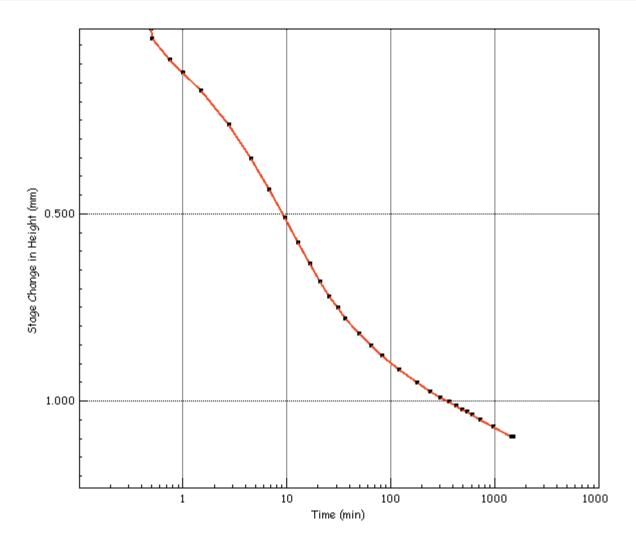
Vertical Stress	σ';	(kPa)	100
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.047
Height Settlement	ΔLs	(mm)	2.853
Voids Ratio	e f		-0.256


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 7	
	- I est ivietilou	DO 1377 - 3 . 1990	. Clause 3	Database: .\SQLE	EXPRESS \ GEL	
0000 7) D	Site Reference			Test Date	01/07/2019	
SHA SU	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH02	
	Operator	TA/JT/JG	Checked *		Approved	*

	Vertical Stress	σ'i	(kPa)	200
	Initial Temperature	Ti	(oC)	20.0
- 1	Frame Correction	Lcorr	(mm)	0.078
	Height Settlement	ΔLs	(mm)	3.912
	Voids Ratio	ef		-0.302


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 7	
	- I est ivietilou	DO 1377 - 3 . 1990	. Clause 3	Database: .\SQLE	EXPRESS \ GEL	
0000 7) D	Site Reference			Test Date	01/07/2019	
SHA SU	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH02	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ'i	(kPa)	50
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.113
Height Settlement	ΔLs	(mm)	3.647
Voids Ratio	e f		-0.291


	Section Park	Test Method BS1377 - 5 : 1		n · Clause 3		Test Name	FRAME 7	
		restiviethod	DO 1077 - 3 . 1990 . Glause 3			Database: .\SQLEXPRESS \ GEL		
		Site Reference			Test Date	01/07/2019		
		Jobfile	35338			Sample	7UT	
		Client	CARDFF PARKWAY			Borehole	BH02	
L		Operator	TA/JT/JG	Checked *			Approved	*

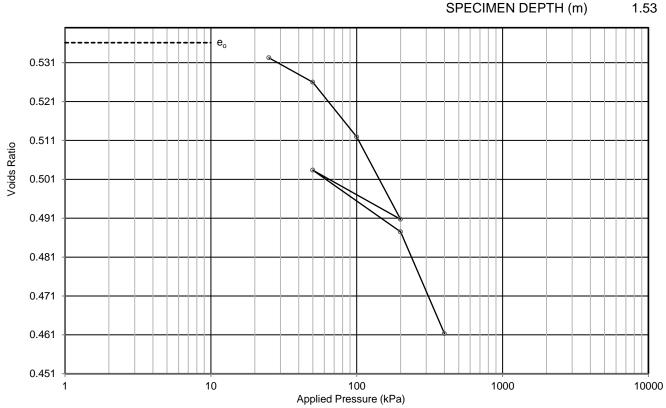
Vertical Stress	σ'i	(kl	Pa)	200
Initial Temperature	Τi	(00	C)	20.0
Frame Correction	L co	RR (m	m)	0.078
Height Settlement	ΔLs		m)	4.159
Voids Ratio	ef			-0.313

	Test Method BS1377 - 5		· Clause 3	Test Name	FRAME 7	
	Test Metriod	DO 1377 - 3 . 1990	. Clause 3	Database: .\SQLEXPRESS \ GEI		
0000 7) D	Site Reference			Test Date	01/07/2019	
SHA SU	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH02	
	Operator	TA/JT/JG	Checked *		Approved	*

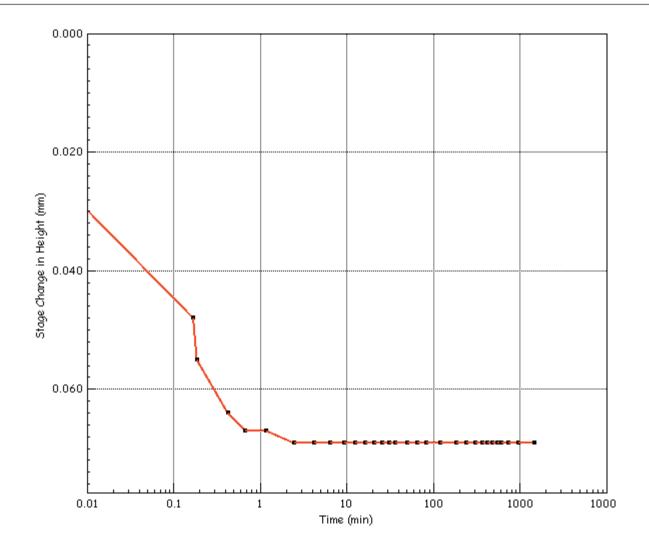
Vertical Stress	σ';	(kPa)	400
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.115
Height Settlement	ΔLs	(mm)	5.219
Voids Ratio	ef		-0.359

	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 7	
- m		BO 1077 - 0 . 1000	. Oladoc o	Database: .\SQLI	EXPRESS \ GEL	
2000 7 D	Site Reference			Test Date	01/07/2019	
SHOW IN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH02	
	Operator	TA/JT/JG	Checked *		Approved	*

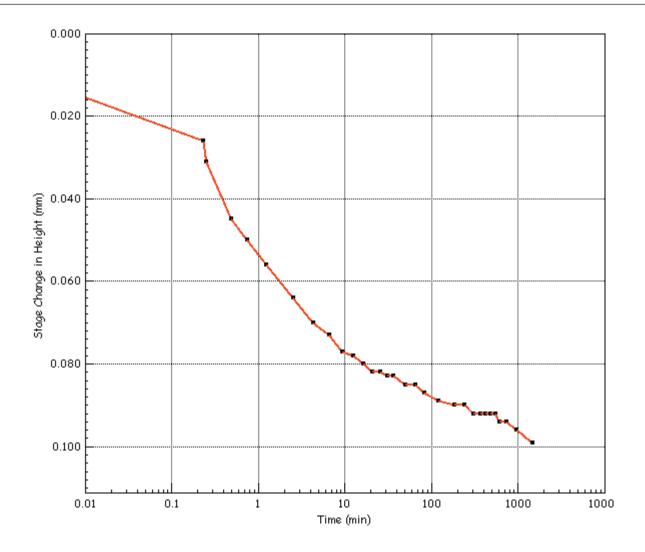
DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES



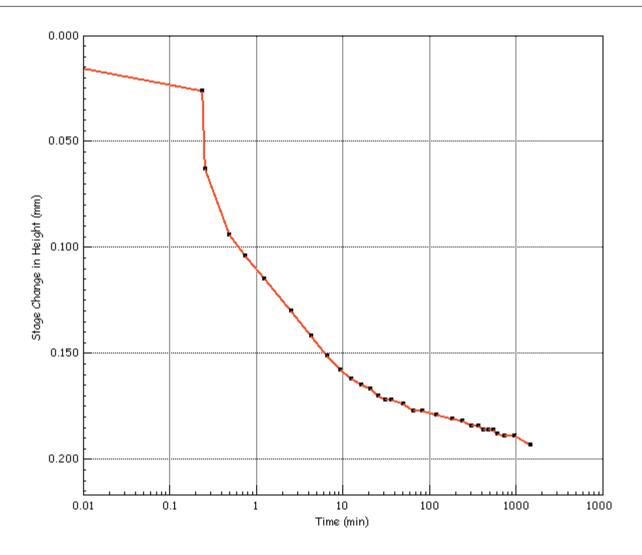
CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH03


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 7UT

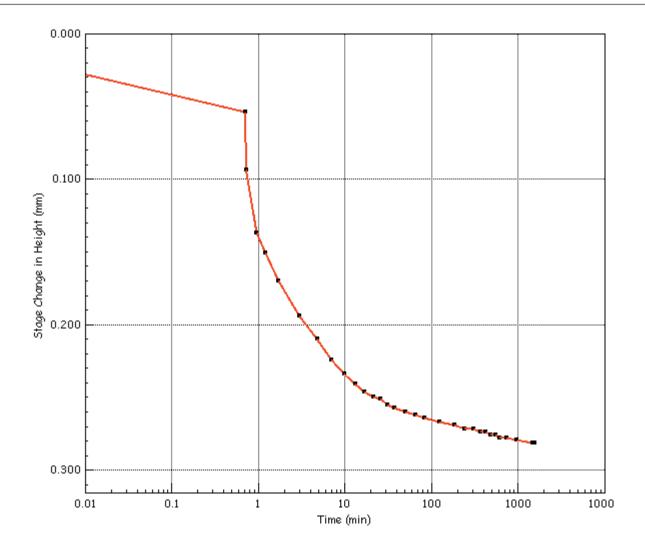
DESCRIPTION Brown mottled grey slightly gravelly slightly sandy CLAY SAMPLE DEPTH (m) 1.20


test and sample details			test results			
·			pressure	voids	laboratory c	oefficients of
specimen diameter	mm	63.49	stage	ratio	compressibility	consolidation
specimen height	mm	18.12	(15)		m_{v}	C_{v}
initial moisture content	%	18.9	(kPa)		(m^2/MN)	(m ² /yr)
final moisture content	%	18.6				
initial bulk density	Mg/m³	2.09	25	0.532	0.10	8.7
initial dry density	Mg/m³	1.76	50	0.526	0.16	3.9
initial voids ratio		0.536	100	0.512	0.18	2.7
initial degree of saturation	%	95	200	0.491	0.14	2.4
particle density	Mg/m³	#2.70	50	0.503	0.056	
swelling pressure	kPa	N/A	200	0.487	0.070	2.5
			400	0.461	0.088	2.6
P'o to P'o +100 kPa		-				
laboratory temperature	°С	20 ± 2				
method of time fitting		root time				
remarks # denotes particle dens	sity has been ass	igned an assume	d value		CONTRACT	CHECKED
load frame corrections	applied					
					35338	ТВ

Vertical Stress	σ'i	(kPa)	25
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.023
Height Settlement	ΔLs	(mm)	0.046
Voids Ratio	e f		-0.135

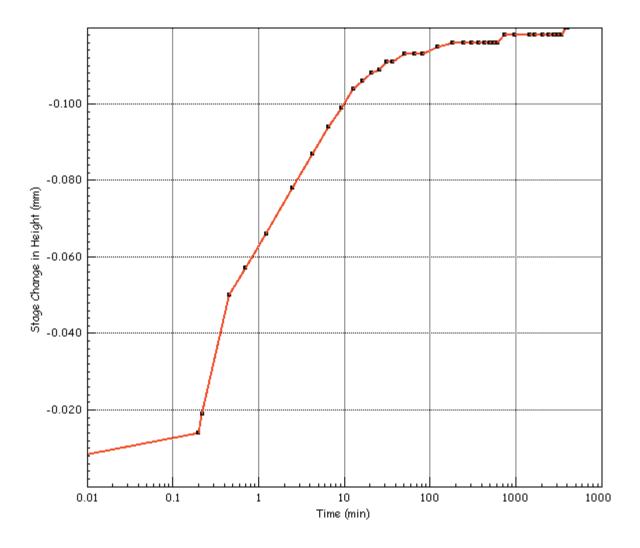

	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
		DO 1377 - 3 . 1990	. Clause 3	Database: .\SQ	LEXPRESS \ GEL	
activ-1	Site Reference			Test Date	01/07/2019	
SHAD IN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH03	
	Operator	TA/JT/JG	Checked *		Approved *	

Vertical Stress	σ';	(kPa)	50
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.048
Height Settlement	ΔLs	(mm)	0.120
Voids Ratio	ef		-0.138

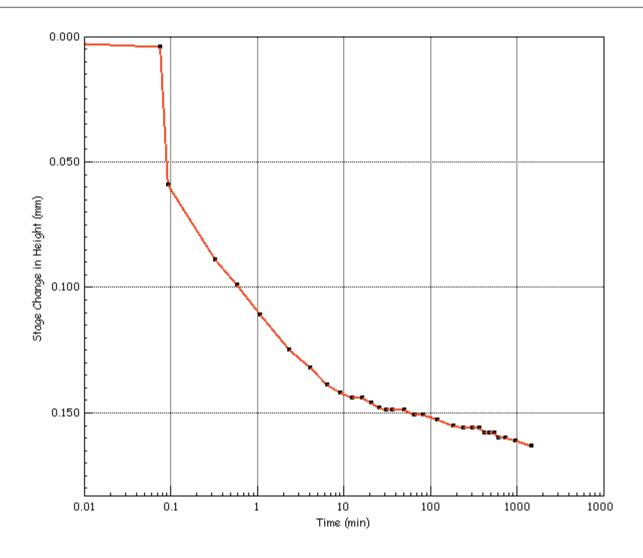


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
- m	- I est ivietilou	B31377 - 3 . 1990	. Clause 3	Database: .\SQLE	EXPRESS \ GEL	
8000 7 B	Site Reference			Test Date	01/07/2019	
SHOW IN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH03	
	Operator	TA/JT/JG	Checked *		Approved	*

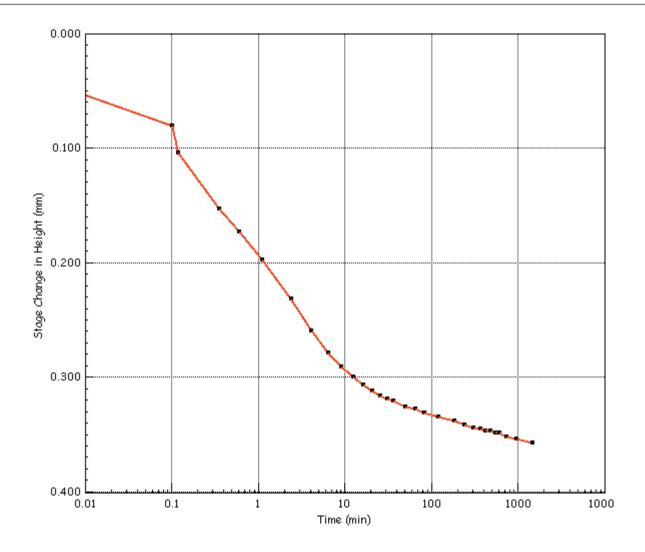
Vertical Stress	σ'i	(kPa)	100
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.075
Height Settlement	ΔLs	(mm)	0.286
Voids Ratio	ef		-0.145



	Test Method	BS1377 - 5 : 1990	: Clause 3	Test Name Database: .\SQLE	FRAME 9	
STORY D	Site Reference			Test Date	01/07/2019	
- SHARIN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH03	
	Operator	TA/JT/JG	Checked *		Approved *	


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
- m	- I est ivietilou	B31377 - 3 . 1990	. Clause 3	Database: .\SQLE	EXPRESS \ GEL	
8000 7 B	Site Reference			Test Date	01/07/2019	
SHOW IN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH03	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ';	(kPa)	50
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.135
Height Settlement	ΔLs	(mm)	0.387
Voids Ratio	e f		-0.150


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
- m	- I est ivietilou	B31377 - 3 . 1990	. Clause 3	Database: .\SQLE	EXPRESS \ GEL	
8000 7 B	Site Reference			Test Date	01/07/2019	
SHOW IN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH03	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ'i	(kPa)	200
Initial Temperature	Τi	(oC)	20.0
Frame Correction	Lcorr	(mm)	0.106
Height Settlement	ΔLs	(mm)	0.574
Voids Ratio	e f		-0.158

	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
- m	- I est ivietilou	B31377 - 3 . 1990	. Clause 3	Database: .\SQLE	EXPRESS \ GEL	
8000 7 B	Site Reference			Test Date	01/07/2019	
SHOW IN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH03	
	Operator	TA/JT/JG	Checked *		Approved	*

	Vertical Stress	σ';	(kPa)	400
	Initial Temperature	T i	(oC)	20.0
	Frame Correction	Lcorr	(mm)	0.151
	Height Settlement	ΔLs	(mm)	0.883
	Voids Ratio	e f		-0.171
1				

	Test Method	BS1377 - 5 : 1990	: Clause 3	Test Name FRAME 9 Database: .\SQLEXPRESS \ GEL		
STORY D	Site Reference			Test Date	01/07/2019	
- SHARIN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH03	
	Operator	TA/JT/JG	Checked *		Approved *	

UNDRAINED TRIAXIAL COMPRESSION

BS.1377: PART 7:1990:8

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole	san	nple	specimen	code	moisture	content	dime	nsions	der	nsity	cell	rate of	deviator	failure	failure	shear		
/trial pit no.	no./type	depth (m)	depth (m)		initial	final	length	diameter	bulk	dry	pressure (kPa)	strain (%/min)	stress (kPa)	strain (%)	mode	strength* (kPa)	description and	d remarks
					(%)	(%)	(mm)	(mm)	(Mg/m3)	(Mg/m3)								
BH02	7UT	2.20	2.22	UU100	65.9	71.7	206	104	1.56	0.94	40	2.0	17	13.6	В	9	Greyish brown sligh organic CLAY with r fragments	are wood
BH03	7UT	1.20	1.25	UU100	18.4	17.8	206	104	2.07	1.75	20	2.0	138	19.9	'	69	Brown mottled grey slightly sandy silty C	
ВН03	14UT	3.20	3.22	UU100	14	14.1	206	104	2.24	1.97	60	2.0	158	18.9	I	79	Brown mottled grey slightly sandy silty C	slightly gravelly CLAY
general remarks	<u> </u> :	<u> </u>	1	ļ	code:		<u> </u>	failure mode:		Į	membrane t	ype/thickness	<u> </u> ::		<u> </u>	<u> </u>	CONTRACT	CHECKED
* shear strength ta membrane correcti sample taken vertic	on applied cally (unless oth	erwise specifi			M - multi stage S - set of three	Э	ed	B - barrel (plas S - shear (britt I - intermediate	tle failure)		38 - 0.2mm 70 - 0.4mm	ne used (unles	s otherwise spe	ecified)			35338	ТВ
strain rate 2%/min	(unless otherwis	se specified)			R - remoulded			O - other (see	remarks)		100 - 0.4mm							

POINT LOAD STRENGTH TEST

I.S.R.M. Suggested Methods: 2007 Edition

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole /trial pit	sample depth	test type	test orien- tation	moisture condition	width	length	platen sep.	failure load	equiv. diam.	ls	size factor	ls(50)	description and remarks
no.	(m)		tation		W	L	D	Р	De	(MPa)		(MPa)	description and remarks
					(mm)	(mm)	(mm)	(kN)	(mm)				
BH01	7.50	D	Υ	Р		60	90	2.46	90.00	0.30	1.30	0.40	Reddish brown SANDSTONE
BH01	7.50	А	Х	Р	90		60	6.44	82.92	0.94	1.26	1.18	Reddish brown SANDSTONE
3H03	7.30	D	Y	Р		50	90	0.69	90.00	0.09	1.30	0.11	Reddish brown MUDSTONE
BH03	7.30	A	X	Р	90		60	0.71	82.92	0.10	1.26	0.13	Reddish brown MUDSTONE
					30								
BH03	9.60	D	Y	Р		25	120	0.41	120.00	0.03	1.48	0.04	Reddish brown MUDSTONE
BH03	9.60	Α	Х	Р	120		30	0.56	67.70	0.12	1.15	0.14	Reddish brown MUDSTONE

general remarks

tests carried out in accordance with I.S.R.M.(2007): Suggested Methods for Determining Point Load Strength test machine PLM02

test type	test orientation relative	to discontinuities	moisture condition	CONTRACT	CHECKED
A - axial	X - perpendicular	U - unknown	N - natural moisture content		
D - diametral	Y - parallel		P - partially air dried	35338	TB
I - irregular lump	Z - oblique		S - soaked		

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 19-22925-1

Initial Date of Issue: 12-Jul-2019

Client Geotechnical Engineering Ltd

Client Address: Centurion House

Olympus Park Quedgeley Gloucester Gloucestershire

GL2 4NF

Contact(s): GEL

Wendy Jones

Project 35338 Cardiff Parkway

Quotation No.: Date Received: 08-Jul-2019

Order No.: 35338/B **Date Instructed:** 08-Jul-2019

No. of Samples: 4

Turnaround (Wkdays): 5 Results Due: 12-Jul-2019

Date Approved: 12-Jul-2019

Approved By:

Details: Robert Monk, Technical Manager

Results - Soil

Client: Geotechnical Engineering Ltd		Che	mtest J	ob No.:	19-22925	19-22925	19-22925	19-22925
Quotation No.:		Chemte	st Sam	ple ID.:	854656	854657	854658	854659
		Client Sample I			7UT	12UT	7UT	7UT
		Sa	ample Lo	ocation:	BH01	BH01	BH02	BH03
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	2.20	4.20	2.20	1.20
		Bot	ttom De	oth (m):	2.65	4.65	2.65	1.65
			Date Sa	ampled:	04-Jul-2019	04-Jul-2019	04-Jul-2019	04-Jul-2019
Determinand	Accred.	SOP	Units	LOD				
Moisture	N	2030	%	0.020	17	11	39	15
pH (2.5:1)	N	2010		N/A	8.3	8.5		8.2
Magnesium (Water Soluble)	N	2120	g/l	0.010	< 0.010	< 0.010		< 0.010
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.035	< 0.010		0.012
Total Sulphur	U	2175	%	0.010	0.067	0.029		0.018
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	< 0.010		< 0.010
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	< 0.010		< 0.010
Sulphate (Acid Soluble)	U	2430	%	0.010	< 0.010	< 0.010		< 0.010
Organic Matter	U	2625	%	0.40			2.6	

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measurement by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 19-21617-1

Initial Date of Issue: 02-Jul-2019

Client Geotechnical Engineering Ltd

Client Address: Centurion House

Olympus Park Quedgeley Gloucester Gloucestershire

GL2 4NF

Contact(s): GEL

Wendy Jones

Project 35338 Cardiff Parkway

Quotation No.: Date Received: 27-Jun-2019

Order No.: 35338/B Date Instructed: 27-Jun-2019

No. of Samples: 4

Turnaround (Wkdays): 3 Results Due: 01-Jul-2019

Date Approved: 02-Jul-2019

Approved By:

Details: Robert Monk, Technical Manager

Results - Soil

Client: Geotechnical Engineering Ltd		Che	mtest J	ob No.:	19-21617	19-21617	19-21617	19-21617
Quotation No.:	(Chemte	st Sam	ple ID.:	849499	849500	849501	849502
		Cli	ent Sam	ple ID.:	3B	2B	8D	4D
		Sa	ample Lo	ocation:	BH01	BH02	BH02	BH03
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	1.00	0.60	2.65	0.60
		Bot	tom De	pth (m):	1.20	0.80	2.80	0.80
			Date Sa	ampled:	26-Jun-2019	26-Jun-2019	26-Jun-2019	26-Jun-2019
Determinand	Accred.	SOP	Units	LOD				
Moisture	N	2030	%	0.020	15	22	38	22
pH (2.5:1)	N	2010		N/A	8.1	8.6	8.2	
Magnesium (Water Soluble)	N	2120	g/l	0.010	< 0.010	< 0.010	0.015	
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.010	0.014	0.36	
Total Sulphur	U	2175	%	0.010	0.016	0.015	0.81	
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	< 0.010	0.022	
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	< 0.010	< 0.010	
Sulphate (Acid Soluble)	U	2430	%	0.010	0.016	0.025	0.12	
Organic Matter	U	2625	%	0.40	0.78			0.86

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measurement by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

2718

GEOTECHNICAL ENGINEERING LIMITED

Version No. 4

For the attention of James Taylor/Edward Crimp Page No. 1 of 41

Date of Issue 13/08/2019

TEST REPORT

PROJECT/SITE	CARDIFF PARKWAY INITIAL GROUND INVESTIGATION	Samples received	04/07/2019
GEL REPORT NUMBER	35338	Schedule received	04/07/2019
Your ref/PO:		Testing commenced	05/07/2019
Test report refers to	Schedule B	Status	Final

SUMMARY OF RESULTS ATTACHED

TEST METHOD & DESCRIPTION	QUANTIT	ACCREDITED
		TEST
BS EN ISO 17892-1: 2014:5. Water Content	8	YES
BS1377: Part 2: 1990:4.2-4.4&5.2-5.4, Liquid & Plastic Limits	8	YES
BS EN ISO 17892-4: 2016: 5.2, Particle Size Distribution - Wet Sieve	5	YES
BS EN ISO 17892-4: 2016: 5.4, Particle Size Distribution - Pipette	5	YES
BS1377: Part 5: 1990:3, Consolidation	3	YES
BS1377: Part 7: 1990:8&9, Undrained Triaxial Compression	3	YES
ISRM: 2007: Point Load Strength Test	12	YES
Organic Matter Content (Subcontracted)	4	YES
BRE SD1 Suite (Subcontracted)	9	YES/NO
		l '

Remarks

This report may not be partially reproduced without written permission from this laboratory.

Approved Signatories:

W Jones (Laboratory Manager) E Crimp (Senior Engineer)

J Hanson (Director) N Parry (Director)

Doc TR01 Rev No. 20 Revision date 09/10/17 DC:JH

Geotechnical Engineering Ltd

Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

Registered number: 00700739 **VAT Number:** 682 5857 89

www.geoeng.co.uk

geotech@geoeng.co.uk TEL: 01452 527743 Fax: 01452 729314

Payments: Geotechnical Engineering Limited **Sort code**: 16-22-11 **Bank account**: 11125135

LIQUID AND PLASTIC LIMITS

BS.1377: PART 2: 1990: 4 and 5

CARDIFF PARKWAY DEVELOPMENTS LIMITED CLIENT

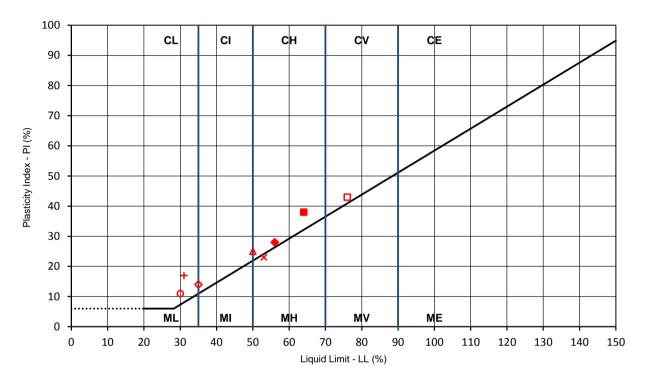
SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole sample		specimen	natural	specimen	fraction	liquid	plastic	plasticity		
/trial pit no.	no./type	depth	depth	water content	preparation and test	>0.425 mm	limit	limit	index	description and remarks
110.		(m)	(m)	(%)	method	(%)	(%)	(%)	(%)	·
				(70)		(70)				
BH06	7UT	1.20	1.25	46.1	BXE	0	76	33	43	Brown mottled grey and orange organic silty CLAY
BH06	17L	3.20	3.60	14	BXE	24	35	21	14	Reddish brown slightly sandy slightly gravelly silty CLAY
BH08	9P	2.10	2.10	39.3	BXE	0	50	25	25	Grey slightly sandy silty CLAY
BH08	11P	3.70	3.75	64.4	BXE	0	53	30	23	Greyish brown organic silty CLAY
BH08	14D	6.50	6.50	20	BXE	27	31	14	17	Reddish brown slightly sandy slightly gravelly silty CLAY
BH08	32D	16.80	16.80	7.3	BXE	24	30	19	11	Grey mottled reddish brown slightly sandy slightly gravelly silty CLAY
BH09	3B	0.60	0.60	32.5	BXE	1	64	26	38	Brownish grey slightly sandy silty CLAY
BH09	9P	2.20	2.30	63.2	BXE	0	56	28	28	Bluish grey organic silty CLAY
general rema	irks	<u>I</u>	<u>I</u>					l .	l .	

natural water content determined in accordance with BS EN ISO 17892 - 1 : 2014 (unless specified)

NP denotes non plastic

denotes sample tested is smaller than that which is recommended in accordance with BS1377 or BS EN ISO 17892


specimen preparation		test method	CONTRACT	CHECKED
A - as received	D - oven dried (60oC)	X - cone penetrometer (test 4.3)		
B - washed on 0.425mm sieve	E - oven dried (105oC)	Y - cone penetrometer (test 4.4)	35338	TB
C - air dried	F - not known	Z - casagrande apparatus (test 4.5)		

Geotechnical Engineering Limited ATTERBERG LINE PLOT

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

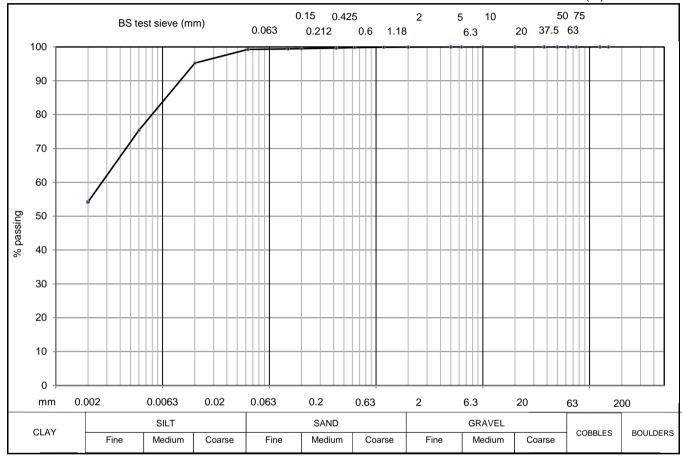
	BH/TP No.	depth (m)	LL	PL	PI	remarks
	BH06	1.25	76	33	43	
♦	BH06	3.60	35	21	14	
Δ	BH08	2.10	50	25	25	
×	BH08	3.75	53	30	23	
+	BH08	6.50	31	14	17	
0	BH08	16.80	30	19	11	
	BH09	0.60	64	26	38	
•	BH09	2.30	56	28	28	

CONTRACT	CHECKED
35338	ТВ

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH06


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 7UT

SAMPLE DEPTH (m) 1.20

DESCRIPTION Brown mottled grey slightly sandy organic silty CLAY

SPECIMEN TOP (m) 1.30

SPECIMEN BASE (m) 1.35

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	54						
SILT	45	150		5	100	20	95
SILT & CLAY	99						
SAND	1	75		2	100	6	75
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	54
test method(s)	5.2 & 5.4	50		0.63	100		
test method							
		37.5		0.425	100		
5.2 - sieving							
		20		0.2	99		
5.3 - sedimentation by hyd	drometer						
		10		0.15	99		
5.4 - sedimentation by pipette							
		6.3		0.063	99		
romarke						ONITDACT	CHECKED

remarks
denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892
Particle density assigned an assumed value of 2.70 Mg/m3

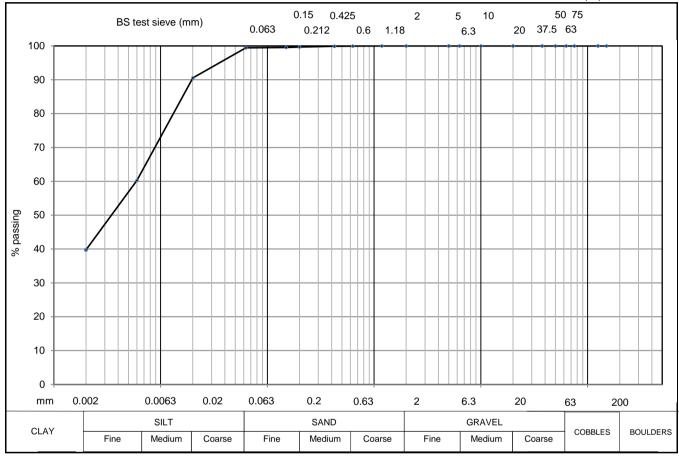
CONTRACT
CHECKED

35338
TB

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH08


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 11P

SAMPLE DEPTH (m) 3.70

DESCRIPTION Grey slightly sandy silty CLAY

SPECIMEN TOP (m) 4.00

SPECIMEN BASE (m) 4.10

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	40						
SILT	60	150		5		20	91
SILT & CLAY	99						
SAND	1	75		2		6	60
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	40
test method(s)	5.2 & 5.4	50		0.63	100		
test method							
		37.5		0.425	100		
5.2 - sieving							
		20		0.2	100		
5.3 - sedimentation by hyd	drometer						
		10		0.15	100		
5.4 - sedimentation by pipette							
		6.3		0.063	99		
remarks	•			•	C	ONTRACT	CHECKED

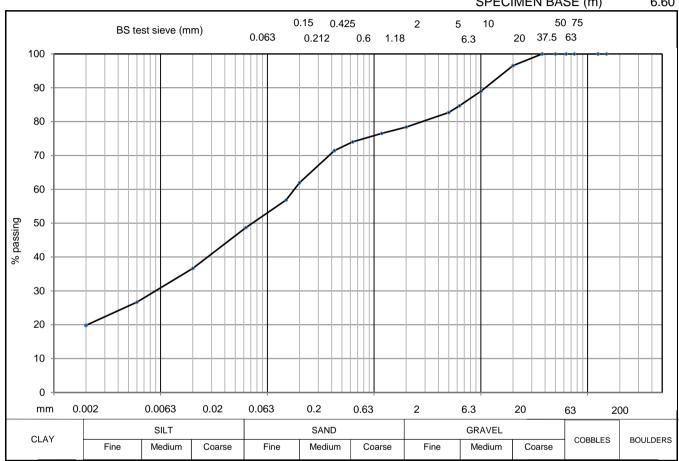
remarks
denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892
Particle density assigned an assumed value of 2.70 Mg/m3

CHECKED

35338
TB

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4: 2016: 5



6.50

CLIENT BH/TP No. **BH08** CARDIFF PARKWAY DEVELOPMENTS LIMITED 14D SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE SAMPLE DEPTH (m) 6.50 DESCRIPTION Reddish brown slightly gravelly slightly sandy silty CLAY

> SPECIMEN BASE (m) 6.60

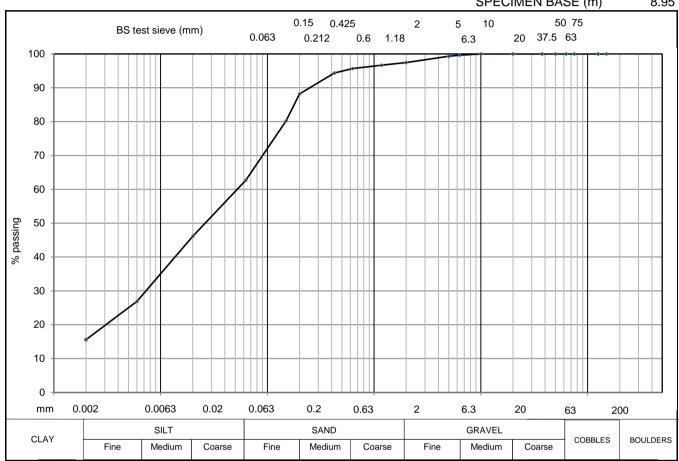
SPECIMEN TOP (m)

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	20						
SILT	29	150		5	83	20	37
SILT & CLAY	49						
SAND	30	75		2	78	6	27
GRAVEL	22						
COBBLE & BOULDER	0	63		1.18	77	2	20
test method(s)	5.2 & 5.4	50		0.63	74		
test method							
		37.5	100	0.425	71		
5.2 - sieving							
		20	97	0.2	62		
5.3 - sedimentation by hyd	drometer						
		10	89	0.15	57		
5.4 - sedimentation by pipette							
		6.3	85	0.063	49		
remarks		·		·	С	ONTRACT	CHECKED

denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892 Particle density assigned an assumed value of 2.70 Mg/m3 35338 **TB**

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5


CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH08

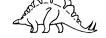
SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 18D

DESCRIPTION Reddish brown slightly gravelly slightly sandy clayey SILT

SPECIMEN TOP (m) 8.50

SPECIMEN BASE (m) 8.95

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	16						
SILT	47	150		5	99	20	46
SILT & CLAY	63						
SAND	35	75		2	97	6	27
GRAVEL	3						
COBBLE & BOULDER	0	63		1.18	97	2	16
test method(s)	5.2 & 5.4	50		0.63	96		
test method							
		37.5		0.425	94		
5.2 - sieving							
		20		0.2	88		
5.3 - sedimentation by hy	drometer						
		10	100	0.15	80		
5.4 - sedimentation by pipette							
		6.3	100	0.063	63		
remarks						CONTRACT	CHECKE

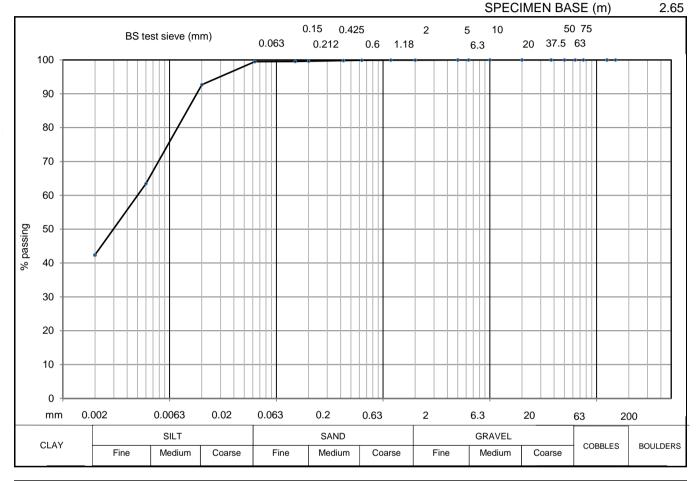

remarks
denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892
Particle density assigned an assumed value of 2.70 Mg/m3

CONTRACT
CHECKED

35338
TB

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5


CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH09

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 9P

SAMPLE DEPTH (m) 2.20

DESCRIPTION Greyish brown silty CLAY

SPECIMEN TOP (m) 2.60

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	42						
SILT	57	150		5	100	20	93
SILT & CLAY	100						
SAND	0	75		2	100	6	63
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	42
test method(s)	5.2 & 5.4	50		0.63	100		
test method							
		37.5		0.425	100		
5.2 - sieving							
		20		0.2	100		
5.3 - sedimentation by hy	drometer						
		10		0.15	100		
5.4 - sedimentation by pipette							
		6.3		0.063	100		
romarks						ONTRACT	CHECKED

remarks
denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892
Particle density assigned an assumed value of 2.70 Mg/m3

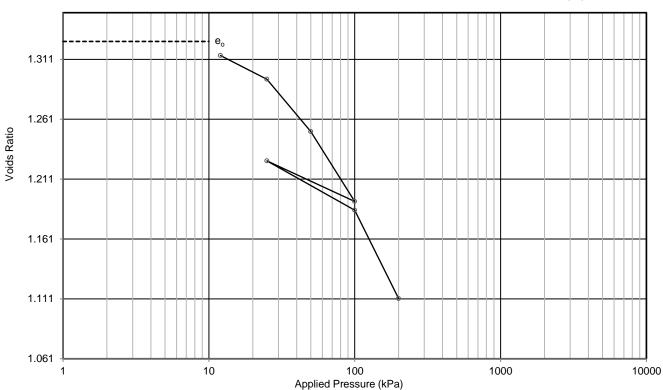
CONTRACT
CHECKED

35338
TB

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

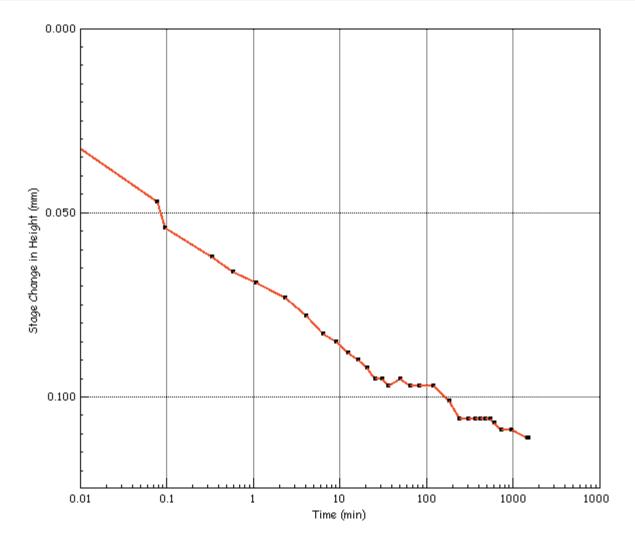
CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

SITE

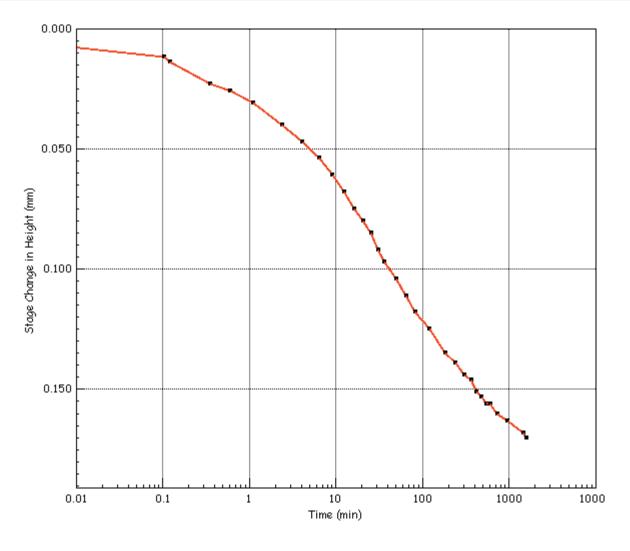

7UT

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH06

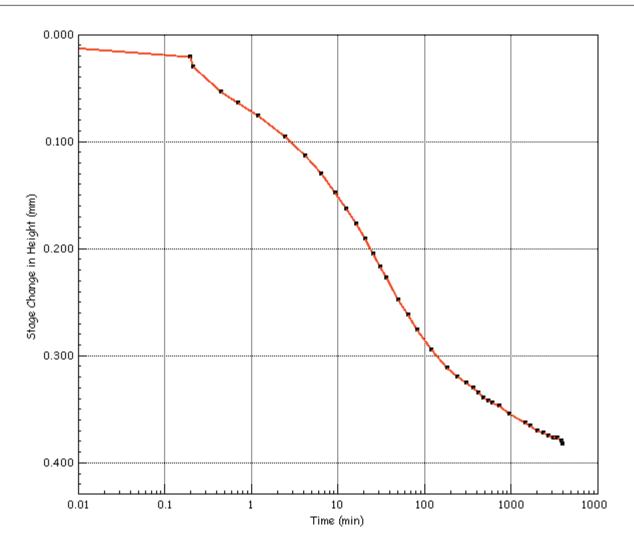
DESCRIPTION Brown mottled grey and orange slightly organic silty CLAY SAMPLE DEPTH (m) 1.20


SPECIMEN DEPTH (m) 1.25

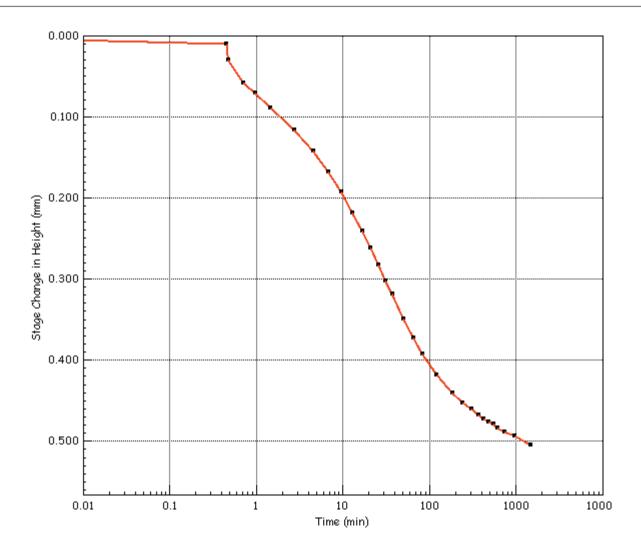
SAMPLE No./TYPE


test and sample details			test results			
			pressure	voids	laboratory c	oefficients of
specimen diameter	mm	63.48	stage	ratio	compressibility	consolidation
specimen height	mm	19.01	(I-D-)		m_{v}	C_{v}
initial moisture content	%	48.0	(kPa)		(m^2/MN)	(m ² /yr)
final moisture content	%	41.9				
initial bulk density	Mg/m³	1.72	12	1.314	0.42	1.5
initial dry density	Mg/m³	1.16	25	1.294	0.66	0.46
initial voids ratio		1.326	50	1.251	0.76	0.50
initial degree of saturation	%	98	100	1.192	0.52	0.35
particle density	Mg/m³	#2.70	25	1.226	0.21	
swelling pressure	kPa	N/A	100	1.185	0.25	0.98
			200	1.111	0.34	0.32
P'o to P'o +100 kPa		-				
laboratory temperature	°С	20 ± 2				
method of time fitting		root time				
-						
remarks # denotes particle de	nsity has been ass	igned an assume	d value		CONTRACT	CHECKED
load frame correction	s applied					
				35338	TB	

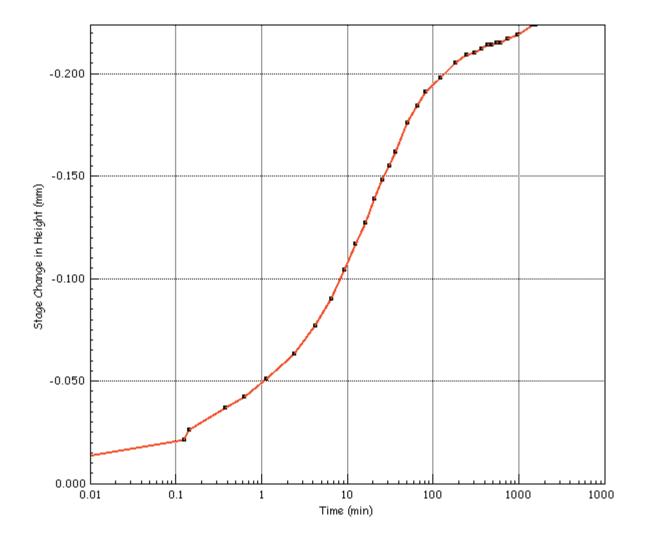
Vertical Stress	σ'i	(kPa)	12.0
Initial Temperature	Τį	(oC)	20.0
Frame Correction	L corr	(mm)	0.015
Height Settlement	∆Ls	(mm)	0.096
Voids Ratio	e f		-0.137


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
		DO 1077 - 0 : 1000	. Olduse o	Database: .\SQLE		
1 ACT 7 7	Site Reference			Test Date	10/07/2019	
A SHANGE	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	'AY	Borehole	BH06	
	Operator	TA/JT/JG	Checked *		Approved	*

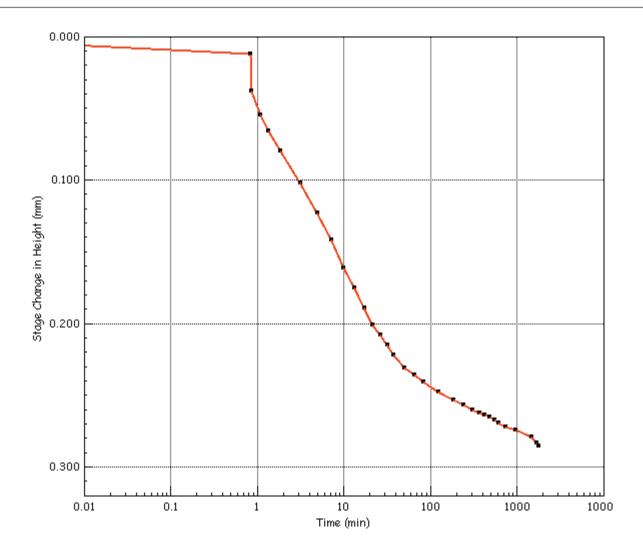
Vertical Stress σ'_i (kPa) 25
Vertical Oticos
Frame Correction L CORR (mm) 0.023
Height Settlement
Voids Ratio e f -0.144


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
- man			. Clause 3	Database: .\SQLEXPRESS \ GEL		
2000 7 D	Site Reference			Test Date	10/07/2019	
SHOW IN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH06	
	Operator	TA/JT/JG	Checked *		Approved	*

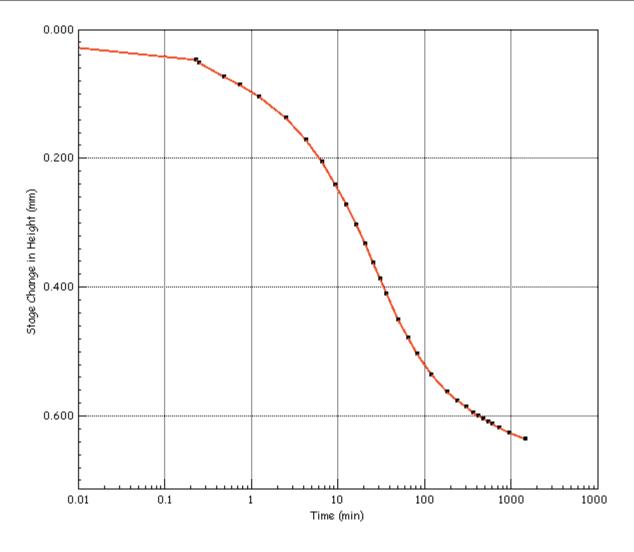
Vertical Stress σ'_i (kPa) 50 Initial Temperature T_i (oC) 20.0 Frame Correction L_{CORR} (mm) 0.048 Height Settlement ΔL_s (mm) 0.615 Voids Ratio σ'_i (kPa) 50					
Frame Correction L CORR (mm) 0.048 Height Settlement Δ L $_{\rm S}$ (mm) 0.615	/ertical Stress	σ'i	(kPa)	50	
Height Settlement ΔL_s (mm) 0.615	nitial Temperature	Τi	(oC)	20.0	
Height Settlement	Frame Correction	L corr	(mm)	0.048	
Voids Ratio	leight Settlement		(mm)	0.615	
	/oids Ratio	e f		-0.159	


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
l m	2		. Olause o	Database: .\SQLEXPRESS \ GEL		
1 00 7 7 D	Site Reference			Test Date	10/07/2019	
SHOW IN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH06	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ'i	(kPa)	100
Initial Temperature	Τį	(oC)	20.0
Frame Correction	L corr	(mm)	0.075
Height Settlement	ΔLs	(mm)	1.092
Voids Ratio	ef		-0.180
	•		


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
		DO 1077 - 0 : 1000	. Olduse o	Database: .\SQLE		
1 ACT 7 7	Site Reference			Test Date	10/07/2019	
A SHANGE	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	'AY	Borehole	BH06	
	Operator	TA/JT/JG	Checked *		Approved	*

ertical Stress σ'_i (kPa) itial Temperature T_i (oC)	25
·	20.0
	20.0
rame Correction L CORR (mm)	0.126
eight Settlement ALs (mm)	0.815
oids Ratio e f	-0.168


Г		Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
	~~~	- CSt WCtrlod			Database: .\SQLI		
	80.00 P P	Site Reference			Test Date	10/07/2019	
	A) HOUSE	Jobfile	35338		Sample	7UT	
		Client	CARDFF PARKW	/AY	Borehole	BH06	
		Operator	TA/JT/JG	Checked *		Approved	*

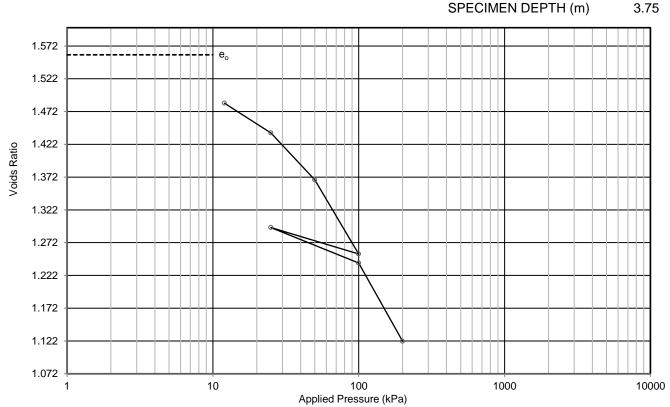
Vertical Stress	σ'i	(kPa)	100
Initial Temperature	T i	(oC)	20.0
Frame Correction	L corr	(mm)	0.075
Height Settlement	ΔLs	(mm)	1.151
Voids Ratio	e f		-0.183



	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
l m	2		. Olause o	Database: .\SQLEXPRESS \ GEL		
1 00 7 7 Pa	Site Reference			Test Date	10/07/2019	
SHOW IN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKW	/AY	Borehole	BH06	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ'i	(kPa)	200
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.106
Height Settlement	ΔLs	(mm)	1.755
Voids Ratio	e f		-0.209



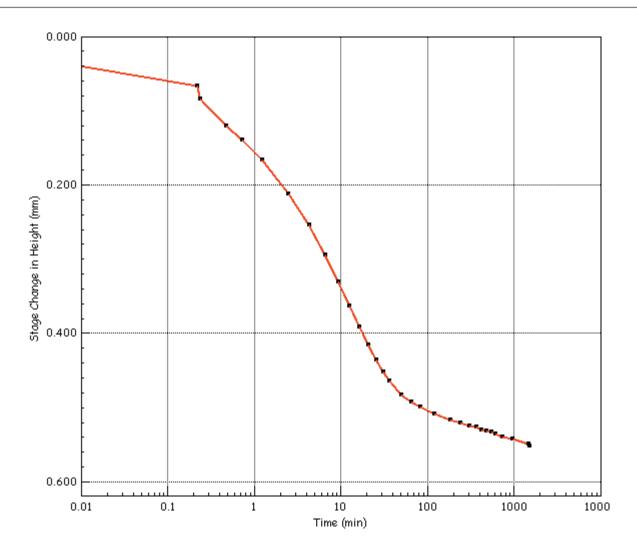

	Test Method BS1377 - 5 : 1990 : Clause 3		· Clause 3	Test Name	FRAME 9	
l m			. Olause o	Database: .\SQLEXPRESS \ GEL		
1 00 7 7 Pa	Site Reference			Test Date	10/07/2019	
SHOW IN	Jobfile	35338		Sample	7UT	
	Client	CARDFF PARKWAY		Borehole	BH06	
	Operator	TA/JT/JG	Checked *		Approved	*

### **DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES**



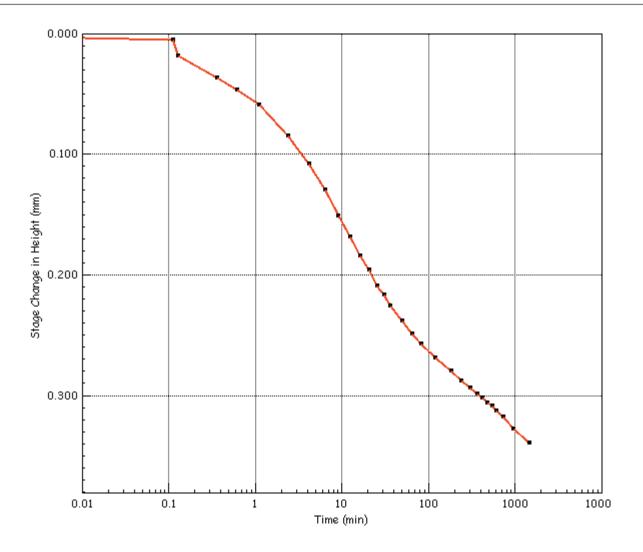
BS.1377: Part 5: 1990: 3

CLIENT	CARE	OIFF PARKWAY DEVELOPMENTS LIMITED	BH/TP No.	BH08
SITE	CARE	OIFF PARKWAY INITIAL GROUND INVESTIGATION	SAMPLE No./TYPE	11P
DESCRIP ⁻	ΓΙΟΝ	Greyish brown slightly organic silty CLAY	SAMPLE DEPTH (m)	3.70



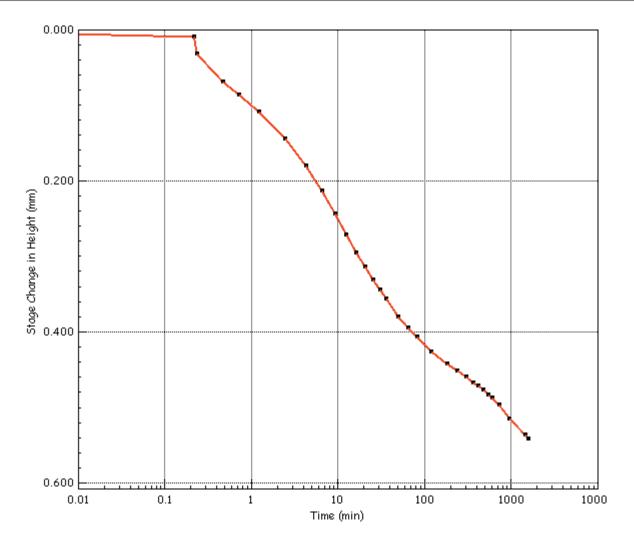

test and sample details	test results	test results					
		pressure voic		laboratory o	ory coefficients of		
specimen diameter	mm	63.40	stage	ratio	compressibility	consolidation	
specimen height	mm	18.92	(I-D-)		mv	Cv	Csec
initial moisture content	%	57.2	(kPa)		(m2/MN)	(m2/	yr)
final moisture content	%	42.8					
initial bulk density	Mg/m3	1.66	12	1.485	2.4	1.3	
initial dry density	Mg/m3	1.06	25	1.439	1.4	0.75	
initial voids ratio		1.559	50	1.368	1.2	0.74	
initial degree of saturation	%	99	100	1.255	0.96	0.54	0.0074
particle density	Mg/m3	#2.70	25	1.295	0.24		
swelling pressure	kPa	N/A	100	1.241	0.32	2.2	
			200	1.122	0.53	0.42	
P'o to P'o +100 kPa		-					
laboratory temperature	оС	$20 \pm 2$					
method of time fitting		root time					
remarks # denotes particle density has been assigned an assumed value					CONTRACT	CHECKED	
load frame correction							

35338


**TB** 

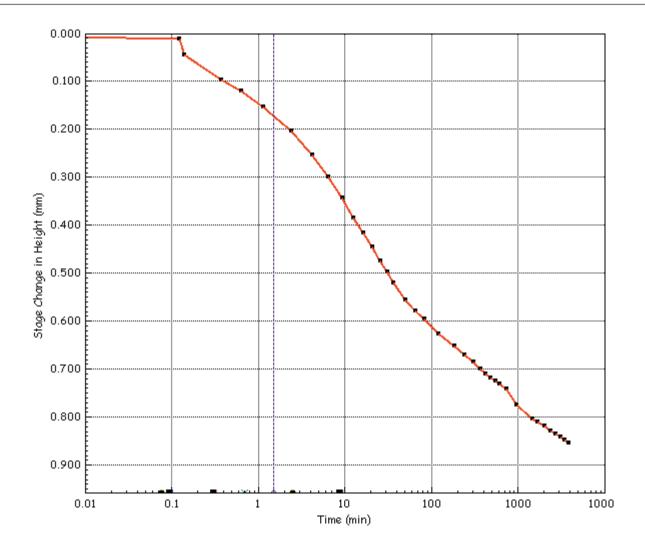
Vertical Stress	σ'i	(kPa)	12.0
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.005
Height Settlement	ΔLs	(mm)	0.546
Voids Ratio	e f		-0.156



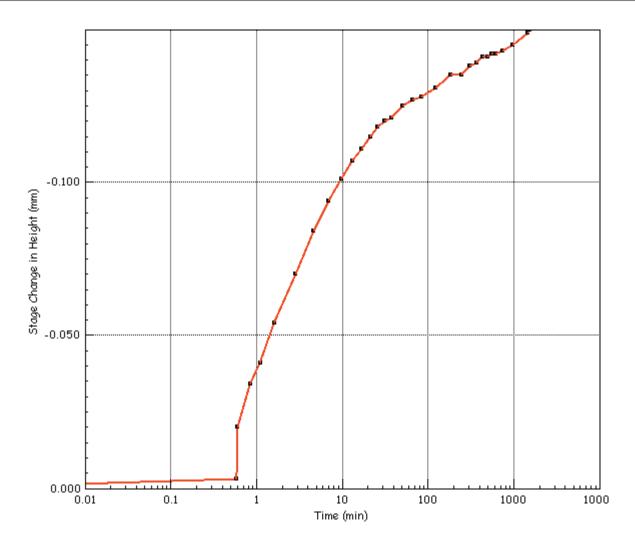

	Test Method BS1377 - 5 : 1990 : Clause 3		· Clause 3	Test Name	FRAME 3	
			Database: .\SQLEXPRESS \ GEL			
0000 7 ) D	Site Reference			Test Date	09/07/2019	
SHA SU	Jobfile	35338		Sample	11P	
	Client	CARDFF PARKW	'AY	Borehole	BH08	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	a) 25
Initial Temperature T i (oC	
Frame Correction L CORR (mn	n) 0.012
Height Settlement	n) 0.881
Voids Ratio e f	-0.171

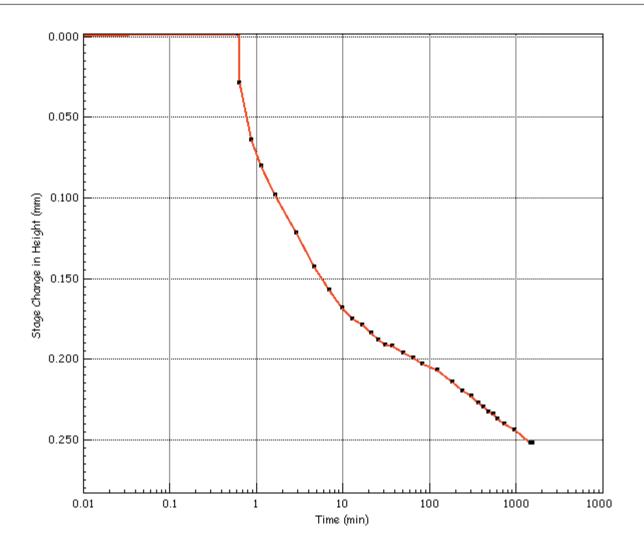



	Test Method BS1377 - 5 : 1990 : Clause 3		· Clause 3	Test Name	FRAME 3	
~~~			Database: .\SQLEXPRESS \ GEL			
2000 7 D	Site Reference		Test Date	09/07/2019		
SHOW IN	Jobfile	35338		Sample	11P	
	Client	CARDFF PARKW	/AY	Borehole	BH08	
	Operator	TA/JT/JG	Checked *		Approved	*

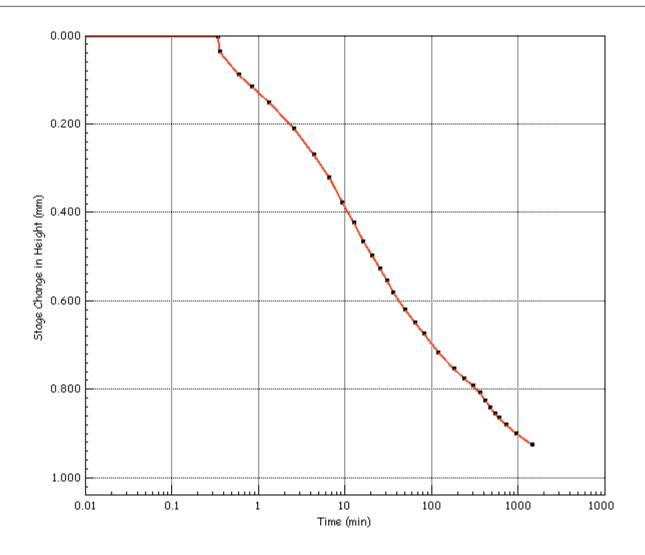
Vertical Stress	σ'i	(kPa)	50
Initial Temperature	T i	(oC)	20.0
Frame Correction	L corr	(mm)	0.026
Height Settlement	ΔLs	(mm)	1.410
Voids Ratio	e f		-0.194


	Test Method E		BS1377 - 5 : 1990 : Clause 3		FRAME 3 EXPRESS \ GEL	
Site Reference		Test Date	09/07/2019			
- SHARING	Jobfile	35338		Sample	11P	
	Client	CARDFF PARKW	/AY	Borehole	BH08	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ';	(kPa)	100
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.061
Height Settlement	ΔLs	(mm)	2.232
Voids Ratio	ef		-0.230


	Test Method E		BS1377 - 5 : 1990 : Clause 3		FRAME 3 EXPRESS \ GEL	
Site Reference		Test Date	09/07/2019			
- SHARING	Jobfile	35338		Sample	11P	
	Client	CARDFF PARKW	/AY	Borehole	BH08	
	Operator	TA/JT/JG	Checked *		Approved	*

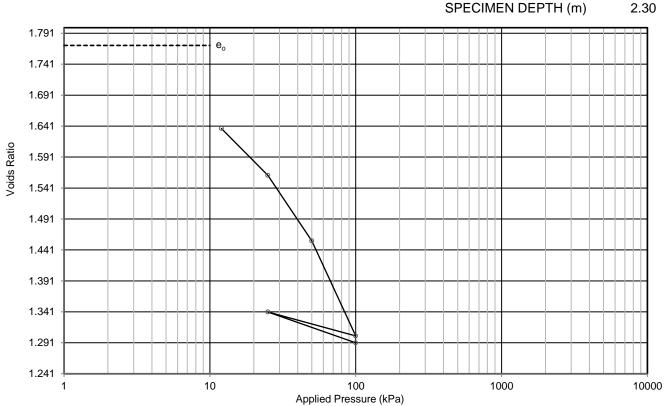
Vertical Stress	σ';	(kPa)	25
Initial Temperature	Τį	(oC)	20.0
Frame Correction	L corr	(mm)	0.210
Height Settlement	ΔLs	(mm)	1.949
Voids Ratio	ef		-0.217


	Test Method BS1377 - 5 : 1990 :		· Clause 3	Test Name	FRAME 3	
- man		B01077 - 0 : 1000 : Glade 0		Database: .\SQLEXPRESS \ GEL		
8000 7 D	Site Reference			Test Date	09/07/2019	
SHOW IN	Jobfile	35338		Sample	11P	
	Client	CARDFF PARKW	/AY	Borehole	BH08	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ';	(kPa)	100
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.061
Height Settlement	ΔLs	(mm)	2.350
Voids Ratio	e f		-0.235

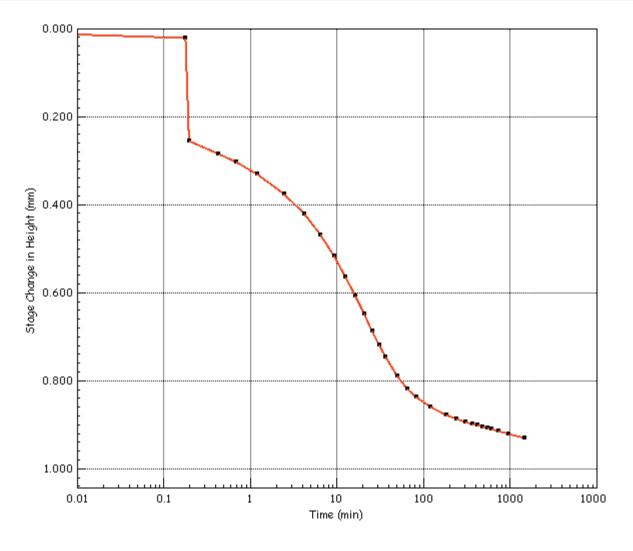
	Test Method BS1377 - 5 : 1990 : Clause 3		· Clause 3	Test Name	FRAME 3	
			Database: .\SQLEXPRESS \ GEL			
0000 7) D	Site Reference			Test Date	09/07/2019	
SHA SU	Jobfile	35338		Sample	11P	
	Client	CARDFF PARKW	'AY	Borehole	BH08	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ' _i	(kPa)	200
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.104
Height Settlement	∆Ls	(mm)	4.578
Voids Ratio	e f		-0.331


Γ		Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 3	
	~~~	- CSt Wictiou	DO 1077 - 0 : 1000	. Oladoc o	Database: .\SQLI	EXPRESS \ GEL	
	2 7 P	Site Reference			Test Date	09/07/2019	
	SHED IN	Jobfile	35338		Sample	11P	
		Client	CARDFF PARKW	'AY	Borehole	BH08	
		Operator	TA/JT/JG	Checked *		Approved	*

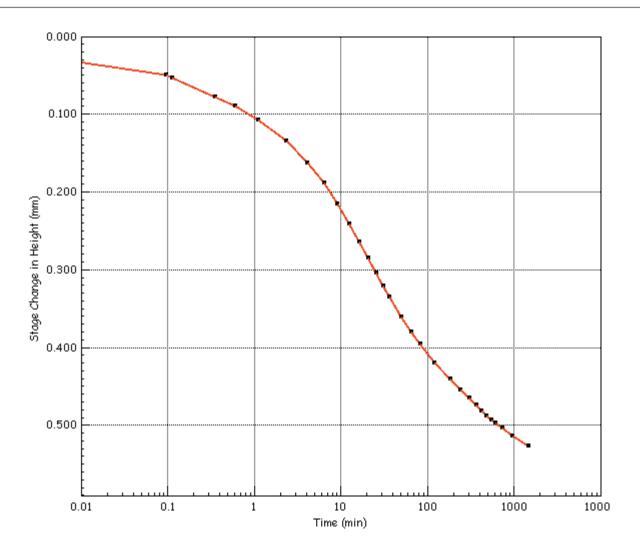
#### **DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES**





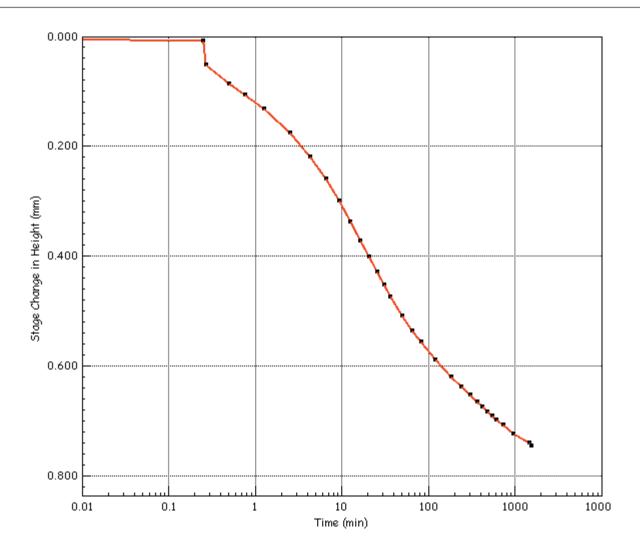

CARDIFF PARKWAY DEVELOPMENTS LIMITED **BH09 CLIENT** BH/TP No. SITE 9P CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE DESCRIPTION Bluish grey slightly organic silty CLAY SAMPLE DEPTH (m) 2.20




test and sample details			test results				
			pressure	voids	laboratory c	oefficient	ts of
specimen diameter	mm	63.33	stage	ratio	compressibility	consol	idation
specimen height	mm	18.87	(I.D)		mv	Cv	Csec
initial moisture content	%	65.9	(kPa)		(m2/MN)	(m2	2/yr)
final moisture content	%	51.2					
initial bulk density	Mg/m3	1.62	12	1.637	4	0.56	
nitial dry density	Mg/m3	0.97	25	1.561	2.2	0.48	
initial voids ratio		1.771	50	1.456	1.7	0.42	
initial degree of saturation	%	100	100	1.302	1.3	0.37	0.0087
particle density	Mg/m3	#2.70	25	1.341	0.22		
swelling pressure	kPa	N/A	100	1.291	0.28	1.9	
P'o to P'o +100 kPa		-					
laboratory temperature	оС	20 ± 2					
method of time fitting		root time					
remarks # denotes particle de	nsity has been ass	igned an assume	d value		CONTRACT	CHEC	CKED
load frame correction	ns applied				35338	Т	В

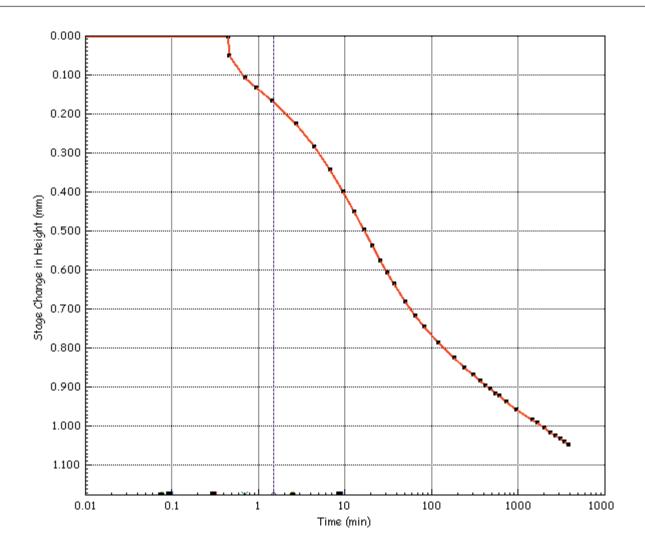
Vertical Stress	σ';	(kPa)	12.0
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.015
Height Settlement	ΔLs	(mm)	0.914
Voids Ratio	e f		-0.172




	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 4	
- m		DO 1077 - 0 : 1000	. Olause o	Database: .\SQLI	EXPRESS \ GEL	
800 7 D	Site Reference			Test Date	09/07/2019	
SHA SU	Jobfile	35338		Sample	9P	
	Client	CARDFF PARKW	/AY	Borehole	BH09	
	Operator	TA/JT/JG	Checked *		Approved	*

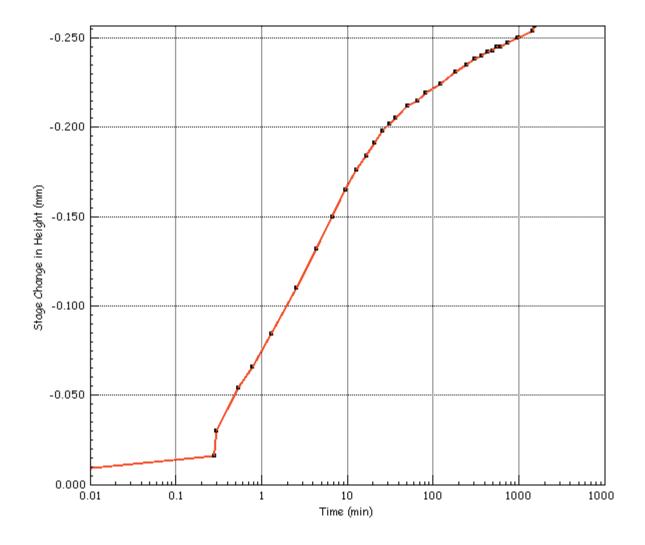
Vertical Stress	σ'i	(kPa)	25
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.031
Height Settlement	ΔLs	(mm)	1.429
Voids Ratio	ef		-0.195
	- ,		




	Test Method	BS1377 - 5 : 1990	: Clause 3	Test Name Database: .\SQLE	FRAME 4 EXPRESS \ GEL	
AST TO BE	Site Reference			Test Date	09/07/2019	
1 SHE	Jobfile	35338		Sample	9P	
	Client	CARDFF PARKW	'AY	Borehole	BH09	
	Operator	TA/JT/JG	Checked *		Approved	*

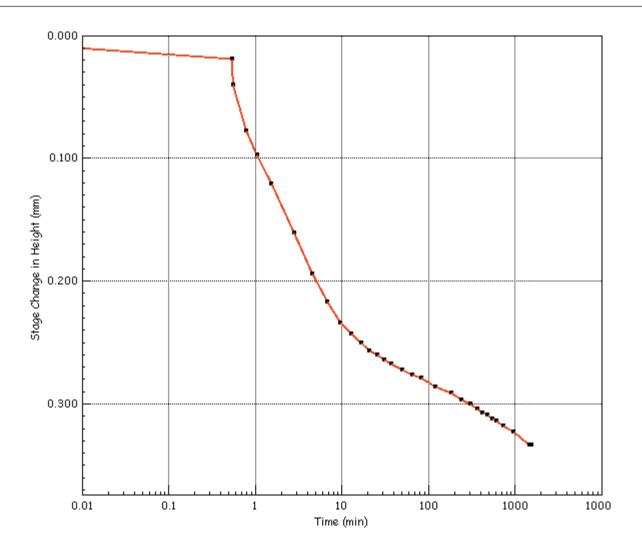
Vertical Stress	σ'i	(kPa)	50
Initial Temperature	Τį	(oC)	20.0
Frame Correction	Lcorr	(mm)	0.056
Height Settlement	ΔLs	(mm)	2.149
Voids Ratio	ef		-0.226




	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 4	
	- I est Method	B3 1377 - 3 . 1990	. Clause 3	Database: .\SQLE	EXPRESS \ GEL	
0000 7 ) D	Site Reference			Test Date	09/07/2019	
SHA SU	Jobfile	35338		Sample	9P	
	Client	CARDFF PARKW	'AY	Borehole	BH09	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ';	(kPa)	100
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.083
Height Settlement	ΔLs	(mm)	3.172
Voids Ratio	ef		-0.270




Г		Test Method	BS1377 - 5 : 1990	· Clause 3	Т	Test Name	FRAME 4	
	-~~		BO 1077 - 3 : 1000	. Oladoc o		Database: .\SQLE	EXPRESS \ GEL	
	2 7 Pa	Site Reference				Test Date	09/07/2019	
	SHAD IN	Jobfile	35338		;	Sample	9P	
		Client	CARDFF PARKW	/AY		Borehole	BH09	
L		Operator	TA/JT/JG	Checked *			Approved	*

Vertical Stress         \u00f3 ' i (kPa)         25           Initial Temperature         T i (oC)         20.0           Frame Correction         L CORR (mm)         0.08
Frame Correction L CORR (mm) 0.08
Height Settlement ALs (mm) 2.93
Voids Ratio e f -0.2



	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 4	
-~~	- CSt Wictiou	DO 1077 - 0 : 1000	. Olause s	Database: .\SQLI	EXPRESS \ GEL	
1 7 Pa	Site Reference			Test Date	09/07/2019	
SHAD IN	Jobfile	35338		Sample	9P	
	Client	CARDFF PARKW	'AY	Borehole	BH09	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress
Initial Temperature T i (oC) 20.0
Frame Correction L CORR (mm) 0.083
Height Settlement
Voids Ratio e f0.275



	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 4	
	- I est Method	B3 1377 - 3 . 1990	. Clause 3	Database: .\SQLE	EXPRESS \ GEL	
0000 7 ) D	Site Reference			Test Date	09/07/2019	
SHA SU	Jobfile	35338		Sample	9P	
	Client	CARDFF PARKW	'AY	Borehole	BH09	
	Operator	TA/JT/JG	Checked *		Approved	*

## **UNDRAINED TRIAXIAL COMPRESSION**

BS.1377: PART 7:1990:8

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION



borehole	san	nple	specimen	code	moisture	content	dimer	nsions	der	sity	cell	rate of	deviator	failure	failure	shear		
/trial pit	no./type	depth	depth		initial	final	length	diameter	bulk	dry	pressure	strain	stress	strain	mode	strength*	description an	d remarks
no.		(m)	(m)								(kPa)	(%/min)	(kPa)	(%)		(kPa)		
					(%)	(%)	(mm)	(mm)	(Mg/m3)	(Mg/m3)								
BH06	7UT	1.20	1.41	UU100	46.1	40.1	206	104	1.45	0.99	20	2.0	29	6.3	I	14	Brown mottled grey organic silty CLAY	and orange
BH08	11P	3.70	3.80	UU100	64.4	64.7	200	100	1.65	1.00	60	2.0	33	3.5	S	16	Greyish brown orga	nic silty CLAY
ВН09	9P	2.20	2.40	UU100	63.2	63.7	200	100	1.51	0.92	40	2.0	25	6.5	S	13	Bluish grey slightly CLAY	organic silty
general remarks:					code:		. 1	failure mode			membrane ty						CONTRACT	CHECKED
* shear strength take membrane correction sample taken vertical strain rate 2%/min (i	on applied ally (unless oth	erwise specifi			UU - unconso M - multi stage S - set of three R - remoulded	e e		B - barrel (plas S - shear (britt I - intermediate O - other (see	tle failure)		38 - 0.2mm 70 - 0.4mm 100 - 0.4mm	ne used (unles	s otherwise spe	есіпеа)			35338	ТВ

## **POINT LOAD STRENGTH TEST**

I.S.R.M. Suggested Methods: 2007 Edition

#### CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED



#### SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole /trial pit	sample depth	test type	test orien-	moisture condition	width	length	platen sep.	failure load	equiv. diam.	ls	size factor	ls(50)	
no.	(m)		tation		W	L	D	Р	De	(MPa)		(MPa)	description and remarks
					(mm)	(mm)	(mm)	(kN)	(mm)				
ВН06	5.62	1	U	Р	50	90	55	5.06	59.17	1.45	1.08	1.56	Reddish brown MUDSTONE
BH06	7.80	D	Υ	Р		40	100	0.16	100.00	0.02	1.37	0.02	Reddish brown MUDSTONE
BH06	7.80	Α	Х	Р	100		40	0.39	71.36	0.08	1.17	0.09	Reddish brown MUDSTONE
BH06	9.40	Α	Х	Р	100		40	2.48	71.36	0.49	1.17	0.57	Reddish brown MUDSTONE
BH06	11.36	D	Y	Р		40	80	3.94	80.00	0.62	1.24	0.76	Reddish brown MUDSTONE
BH06	11.36	Α	Х	Р	80		30	4.16	55.28	1.36	1.05	1.42	Reddish brown MUDSTONE
BH08	18.20	I	U	Р	70	40	30	1.20	51.71	0.45	1.02	0.46	Reddish brown MUDSTONE
BH08	21.75	D	Υ	Р		70	90	1.63	90.00	0.20	1.30	0.26	Reddish brown MUDSTONE
BH08	21.75	Α	х	Р	90		70	1.54	89.56	0.19	1.30	0.25	Reddish brown MUDSTONE
BH08	23.80	D	Υ	Р		50	70	0.96	70.00	0.20	1.16	0.23	Reddish brown SANDSTONE
BH08	23.80	Α	Х	Р	70		50	0.59	66.76	0.13	1.14	0.15	Reddish brown SANDSTONE
BH09	8.90	I	U	Р	70	40	40	1.26	59.71	0.35	1.08	0.38	Reddish brown MUDSTONE
BH09	13.05	I	U	Р	90	110	70	1.96	89.56	0.24	1.30	0.32	Reddish brown MUDSTONE
BH09	16.80	D	Y	Р		50	90	5.49	90.00	0.68	1.30	0.88	Reddish brown SANDSTONE
BH09	16.80	Α	Х	Р	90		45	6.74	71.81	1.31	1.18	1.54	Reddish brown SANDSTONE
BH09	17.55	D	Y	Р		60	90	3.47	90.00	0.43	1.30	0.56	Reddish brown SANDSTONE
BH09	17.55	Α	Х	Р	90		60	12.80	82.92	1.86	1.26	2.34	Reddish brown SANDSTONE
BH09	21.85	D	Y	Р		30	90	0.21	90.00	0.03	1.30	0.03	Reddish Brown MUDSTONE
BH09	21.85	Α	Х	Р	90		35	0.39	63.33	0.10	1.11	0.11	Reddish Brown MUDSTONE
gonoral ror													

general remarks

tests carried out in accordance with I.S.R.M.(2007): Suggested Methods for Determining Point Load Strength test machine PLM02

test type	test orientation relative	to discontinuities	moisture condition	CONTRACT	CHECKED
A - axial	X - perpendicular	U - unknown	N - natural moisture content		
D - diametral	Y - parallel		P - partially air dried	35338	TB
I - irregular lump	Z - oblique		S - soaked		



Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

## **Final Report**

**Report No.:** 19-22897-1

Initial Date of Issue: 15-Jul-2019

Client Geotechnical Engineering Ltd

Client Address: Centurion House

Olympus Park Quedgeley Gloucester Gloucestershire

GL2 4NF

Contact(s): GEL

Wendy Jones

**Project** 35338B Cardiff Parkway Initial Ground

Investigation

Quotation No.: Date Received: 08-Jul-2019

Order No.: 35338B/WJ Date Instructed: 08-Jul-2019

No. of Samples: 8

Turnaround (Wkdays): 5 Results Due: 12-Jul-2019

Date Approved: 15-Jul-2019

Approved By:

**Details:** Robert Monk, Technical Manager



## **Results - Soil**

T TOJECT. 33330D Gardin T arkway initial Gr												
Client: Geotechnical Engineering Ltd		Che	ntest J	ob No.:	19-22897	19-22897	19-22897	19-22897	19-22897	19-22897	19-22897	19-22897
Quotation No.:		Chemte	st Sam	ple ID.:	854548	854549	854550	854551	854552	854553	854554	854555
		Cli	ent Sam	ple ID.:	2D	25C	7L	21D	29C	1B	16C	25C
		Sa	ample L	ocation:	BH06	BH06	BH08	BH08	BH08	BH09	BH09	BH09
			Sampl	е Туре:	SOIL							
			Top De	pth (m):	0.20	9.60	1.20	9.40	14.50	0.20	8.20	20.20
		Bot	tom De	pth (m):	0.40	11.10	2.10	9.50	16.00	0.40	9.70	21.70
			Date Sa	ampled:	05-Jul-2019							
Determinand	Accred.	SOP	Units	LOD								
Moisture	N	2030	%	0.020	15	9.8	43	9.9	5.4	20	9.6	9.2
pH (2.5:1)	N	2010		N/A	8.3	8.6		9.6	8.4	9.5	9.7	9.5
Magnesium (Water Soluble)	N	2120	g/l	0.010	0.010	< 0.010		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.49	0.051		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Total Sulphur	U	2175	%	0.010	0.087	0.030		0.028	0.019	0.011	0.019	< 0.010
Chloride (Water Soluble)	U	2220	g/l	0.010	0.041	< 0.010		0.028	< 0.010	0.010	0.081	0.071
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	< 0.010		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Sulphate (Acid Soluble)	U	2430	%	0.010	0.16	0.020		0.036	0.020	< 0.010	< 0.010	< 0.010
Organic Matter	U	2625	%	0.40			7.8					



## **Test Methods**

SOP	Title	Parameters included	Method summary				
2010	pH Value of Soils	рН	pH Meter				
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained a <37°C.				
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES				
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.				
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measurement by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.				
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.				
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.				



#### **Report Information**

#### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>





Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.com

## **Final Report**

**Report No.:** 19-23528-1

Initial Date of Issue: 18-Jul-2019

Client Geotechnical Engineering Ltd

Client Address: Centurion House

Olympus Park Quedgeley Gloucester Gloucestershire

GL2 4NF

Contact(s): GEL

Wendy Jones

**Project** 35338B Cardiff Parkway Initial Ground

Investigation

Quotation No.: Date Received: 12-Jul-2019

Order No.: 35338B/WJ Date Instructed: 12-Jul-2019

No. of Samples: 3

Turnaround (Wkdays): 5 Results Due: 18-Jul-2019

Date Approved: 18-Jul-2019

Approved By:

**Details:** Martin Dyer, Laboratory Manager



Client: Geotechnical Engineering Ltd		Che	mtest J	ob No.:	19-23528	19-23528	19-23528
Quotation No.:	(	Chemte	st Sam	ple ID.:	856967	856968	856969
		Cli	ent Sam	ple ID.:	7UT	11P	9P
		Sa	ample Lo	ocation:	BH06	BH08	BH09
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top De	pth (m):	1.20	3.70	2.20
		Bot	tom De	pth (m):	1.65	4.50	3.20
			Date Sa	ampled:	10-Jul-2019	10-Jul-2019	10-Jul-2019
Determinand	Accred.	SOP	Units	LOD			
Moisture	N	2030	%	0.020	46	36	37
pH (2.5:1)	N	2010		N/A	7.5	8.5	
Magnesium (Water Soluble)	N	2120	g/l	0.010	0.021	0.014	
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.25	0.12	
Total Sulphur	U	2175	%	0.010	0.55	0.20	
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	0.15	
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	< 0.010	
Sulphate (Acid Soluble)	U	2430	%	0.010	0.18	0.094	
Organic Matter	U	2625	%	0.40	14	1.5	1.9



## **Test Methods**

SOP	Title	Parameters included	Method summary				
2010	pH Value of Soils	рН	pH Meter				
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained a <37°C.				
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES				
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.				
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measurement by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.				
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.				
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.				



#### **Report Information**

#### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>



2718



#### GEOTECHNICAL ENGINEERING LIMITED

Version No. 4

For the attention of James Taylor/Edward Crimp Page No. 1 of 47

Date of Issue 13/08/2019

#### **TEST REPORT**

PROJECT/SITE	CARDIFF PARKWAY INITIAL GROUND INVESTIGATION	Samples received	16/07/2019
GEL REPORT NUMBER	35338	Schedule received	16/07/2019
Your ref/PO:		Testing commenced	18/07/2019
Test report refers to	Schedule C	Status	Final

#### **SUMMARY OF RESULTS ATTACHED**

TEST METHOD & DESCRIPTION	C	QUANTITY	ACCREDITED
			TEST
BS EN ISO 17892-1: 2014:5. Water Content		15	YES
BS1377: Part 2: 1990:4.2-4.4&5.2-5.4, Liquid & Plastic Limits		15	YES
BS EN ISO 17892-4: 2016: 5.2, Particle Size Distribution - Wet Sieve		12	YES
BS EN ISO 17892-4: 2016: 5.4, Particle Size Distribution - Pipette		12	YES
BS1377: Part 5: 1990:3, Consolidation		3	YES
BS1377: Part 7: 1990:8&9, Undrained Triaxial Compression		2	YES
ISRM: Suggested Methods: 2007: Uniaxial Compressive Strength of Rock		1	YES
ISRM: 2007: Point Load Strength Test		5	YES
Organic Matter Content (Subcontracted)		9	YES
Loss On Ignition (Subcontracted)		2	YES
BRE SD1 Suite (Subcontracted)		8	YES/NO

Remarks

This report may not be partially reproduced without written permission from this laboratory.

Approved Signatories:

W Jones (Laboratory Manager) E Crimp (Senior Engineer)

J Hanson (Director) N Parry (Director)

Doc TR01 Rev No. 20 Revision date 09/10/17 DC:JH

**Geotechnical Engineering Ltd** 

Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

**Registered number:** 00700739 **VAT Number:** 682 5857 89

www.geoeng.co.uk

geotech@geoeng.co.uk TEL: 01452 527743 Fax: 01452 729314

Payments: Geotechnical Engineering Limited Sort code: 16-22-11 Bank account: 11125135

## LIQUID AND PLASTIC LIMITS

BS.1377: PART 2: 1990: 4 and 5

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

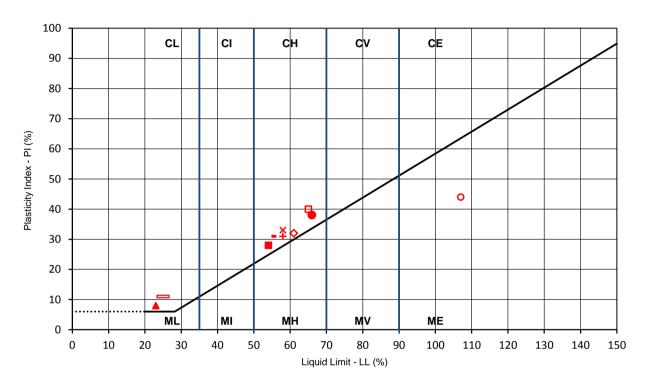


borehole	san	nple	specimen	natural	specimen	fraction	liquid	plastic	plasticity	
/trial pit	no./type	depth	depth	water content	preparation and test	>0.425 mm	limit	limit	index	description and remarks
no.		(m)	(m)		method	(0.(.)	(%)	(%)	(%)	assonption and remaine
				(%)		(%)				
BH10	2D	0.20	0.20	31.3	BXE	2	65	25	40	Brown mottled orange slightly gravelly slightly sandy silty CLAY with rare rootlets
BH10	14UT	3.20	3.30	59.7	BXE	2	61	29	32	Grey slightly gravelly slightly sandy silty organic CLAY
BH10	20UT	5.20	5.30	367	BXD	5	466	278	188	Black slightly gravelly slightly sandy clayey PEAT
BH11	4D	0.80	0.80	34.2	BXE	1	58	25	33	Brown mottled orange slightly sandy silty CLAY
BH11	9UT	2.20	2.30	56.3	BXE	0	58	27	31	Grey mottled brown slightly sandy silty organic CLAY
BH11	19D	5.20	5.20	220	BXD	8	107	63	44	Dark brown mottled grey slightly gravelly slightly sandy clayey PEAT
BH11	23D	7.30	7.30	60	BXE	1	54	26	28	Grey slightly sandy silty organic CLAY
BH11	26D	8.60	8.60	14.5	BXE	33	21	NP		Reddish brown slightly gravelly sandy SILT
BH11	29D	10.90	10.90	13.6	BXE	2	23	15	8	Reddish brown mottled grey slightly gravelly slightly sandy silty CLAY
TP05	4D	1.00	1.00	33	BXE	2	66	28	38	Greyish brown slightly gravelly slightly sandy silty CLAY
TP06	8D	3.00	3.00	19.6	BXE	2	25	14	11	Reddish brown sandy silty CLAY
TP07	1B	0.50	0.50	28.4	BXE	0	55	24	31	Greyish brown silty CLAY with rare rootlets
TP07	8D	3.00	3.00	50.2	BXE	3	52	23	29	Grey slightly sandy organic silty CLAY with rare rootlets
TP08	6D	2.00	2.00	17.1	BXE	27	30	16	14	Reddish brown slightly sandy slightly gravelly silty CLAY
TP09	7B	2.80	2.80	50.9	BXE	0	54	26	28	Greyish brown slightly sandy silty organic CLAY
general rema	rks									
] =====================================										

natural water content determined in accordance with BS EN ISO 17892 - 1 : 2014 (unless specified)

NP denotes non plastic

# denotes sample tested is smaller than that which is recommended in accordance with BS1377 or BS EN ISO 17892


specimen preparation		test method	CONTRACT	CHECKED
A - as received	D - oven dried (60oC)	X - cone penetrometer (test 4.3)		
B - washed on 0.425mm sieve	E - oven dried (105oC)	Y - cone penetrometer (test 4.4)	35338	TB
C - air dried	F - not known	Z - casagrande apparatus (test 4.5)		

# Geotechnical Engineering Limited ATTERBERG LINE PLOT

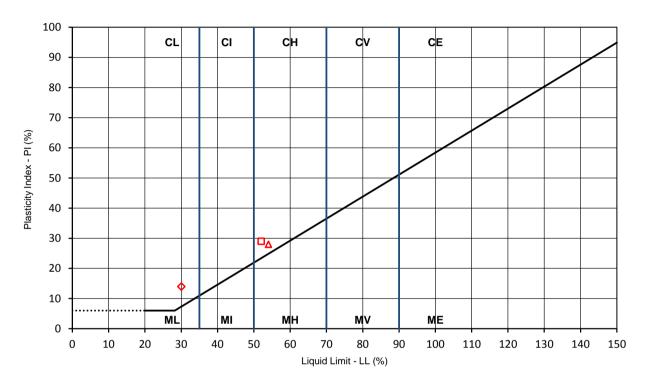


CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION



	BH/TP No.	depth (m)	LL	PL	PI	remarks
	BH10	0.20	65	25	40	
<b>♦</b>	BH10	3.30	61	29	32	
	BH10	5.30	466	278	188	result exceeds plot
×	BH11	0.80	58	25	33	
+	BH11	2.30	58	27	31	
0	BH11	5.20	107	63	44	
	BH11	7.30	54	26	28	
	BH11	8.60	21	NP		
	BH11	10.90	23	15	8	
•	TP05	1.00	66	28	38	
	TP06	3.00	25	14	11	
-	TP07	0.50	55	24	31	


CONTRACT	CHECKED
35338	ТВ

# Geotechnical Engineering Limited ATTERBERG LINE PLOT



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION



	BH/TP No.	depth (m)	LL	PL	PI	remarks
	TP07	3.00	52	23	29	
<b>\$</b>	TP08	2.00	30	16	14	
Δ	TP09	2.80	54	26	28	

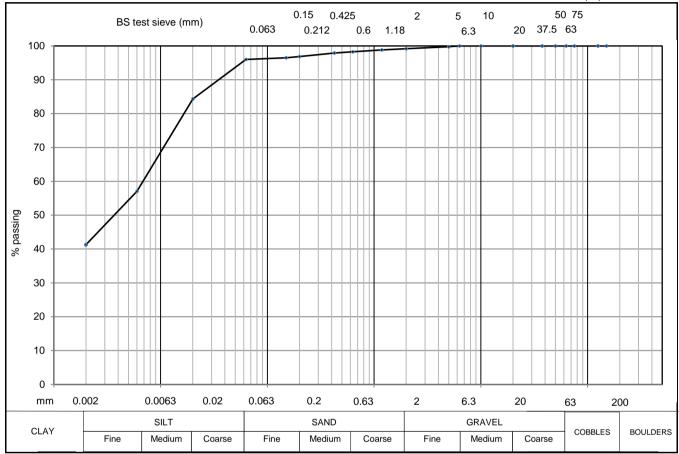
CONTRACT	CHECKED		
35338	ТВ		

## PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH10


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 14UT

SAMPLE DEPTH (m) 3.20

DESCRIPTION Grey slightly gravelly slightly sandy silty organic CLAY

SPECIMEN TOP (m) 3.20

SPECIMEN BASE (m) 3.25

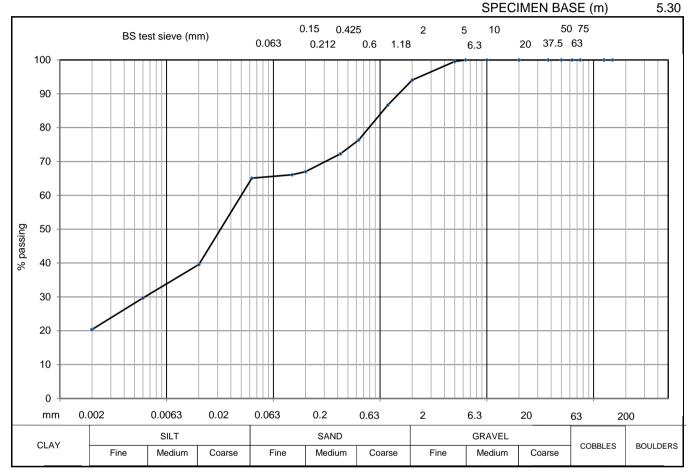


soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	41						
SILT	55	150		5	100	20	84
SILT & CLAY	96						
SAND	3	75		2	99	6	57
GRAVEL	1						
COBBLE & BOULDER	0	63		1.18	99	2	41
test method(s)	5.2 & 5.4	50		0.63	98		
test method		1					
		37.5		0.425	98		
5.2 - sieving							
		20		0.2	97		
5.3 - sedimentation by hyd	drometer						
		10		0.15	97		
5.4 - sedimentation by pipette							
		6.3	100	0.063	96		
remarks					С	ONTRACT	CHECKE

## PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5




CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH10

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 20UT

SAMPLE DEPTH (m) 5.20

DESCRIPTION Black slightly gravelly slightly sandy clayey PEAT SPECIMEN TOP (m)

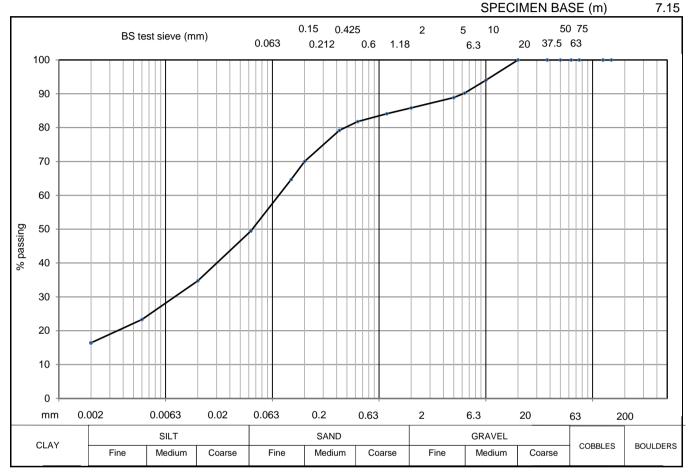
SPECIMEN TOP (m) 5.25



soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	20						
SILT	45	150		5	100	20	40
SILT & CLAY	65						
SAND	29	75		2	94	6	30
GRAVEL	6						
COBBLE & BOULDER	0	63		1.18	87	2	20
test method(s)	5.2 & 5.4	50		0.63	76		
test method		]					
		37.5		0.425	72		
5.2 - sieving							
		20		0.2	67		
5.3 - sedimentation by hy	drometer						
		10		0.15	66		
5.4 - sedimentation by pipette							
		6.3	100	0.063	65		
# 0 m 0 m l c 0					-		CHECKED

## PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5




CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH10
SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 25D

SAMPLE DEPTH (m) 6.70

DESCRIPTION Brown mottled dark brown slightly gravelly sandy silty CLAY

SPECIMEN TOP (m) 6.70



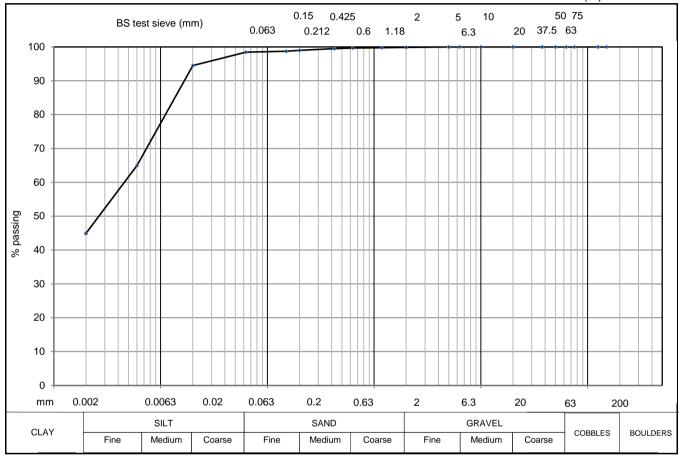
soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	16						
SILT	33	150		5	89	20	35
SILT & CLAY	49						
SAND	36	75		2	86	6	23
GRAVEL	14						
COBBLE & BOULDER	0	63		1.18	84	2	16
test method(s)	5.2 & 5.4	50		0.63	82		
test method		1					
		37.5		0.425	79		
5.2 - sieving							
		20	100	0.2	70		
5.3 - sedimentation by hy	drometer						
		10	94	0.15	65		
5.4 - sedimentation by pipette							
		6.3	90	0.063	49		
remarks					С	ONTRACT	CHECKED

## PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH11


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 9UT

SAMPLE DEPTH (m) 2.20

DESCRIPTION Grey mottled brown slightly sandy silty organic CLAY

SPECIMEN TOP (m) 2.25

SPECIMEN BASE (m) 2.30



soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	45						
SILT	54	150		5	100	20	95
SILT & CLAY	98						
SAND	1	75		2	100	6	65
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	45
test method(s)	5.2 & 5.4	50		0.63	100		
test method							
		37.5		0.425	99		
5.2 - sieving							
		20		0.2	99		
5.3 - sedimentation by hyd	drometer						
		10		0.15	99		
5.4 - sedimentation by pipette							
		6.3		0.063	98		
romarke		<u> </u>			(		CHECKED

## **PARTICLE SIZE DISTRIBUTION**

BS EN ISO 17892 - 4:2016:5



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH11


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 19D

SAMPLE DEPTH (m) 5.20

DESCRIPTION Dark brown mottled grey slightly gravelly slightly sandy silty

organic CLAY

SPECIMEN TOP (m) 5.20

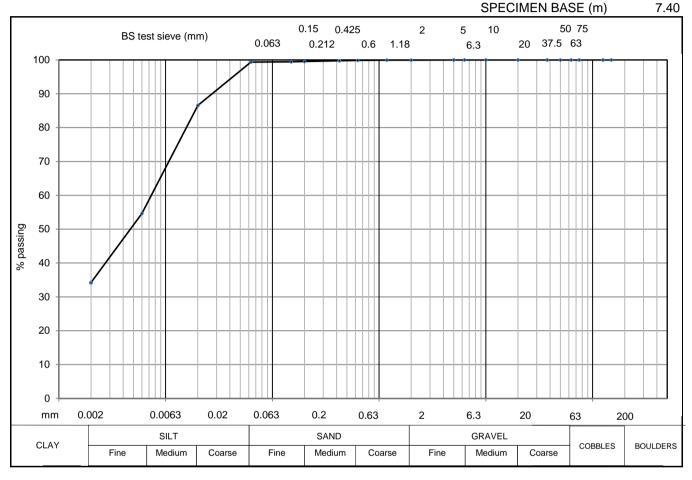


soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	26						
SILT	52	150		5	95	20	60
SILT & CLAY	78						
SAND	13	75		2	91	6	40
GRAVEL	9						
COBBLE & BOULDER	0	63		1.18	87	2	26
test method(s)	5.2# & 5.4	50		0.63	83		
test method	1	1					
		37.5		0.425	81		
5.2 - sieving							
		20	100	0.2	79		
5.3 - sedimentation by hy	drometer						
		10	96	0.15	78		
5.4 - sedimentation by pipette							
		6.3	95	0.063	78		
remarks				-		CONTRACT	CHECKED

## PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5




CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH11

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 23D

SAMPLE DEPTH (m) 7.30

DESCRIPTION Grey slightly sandy silty organic CLAY

SPECIMEN TOP (m) 7.30



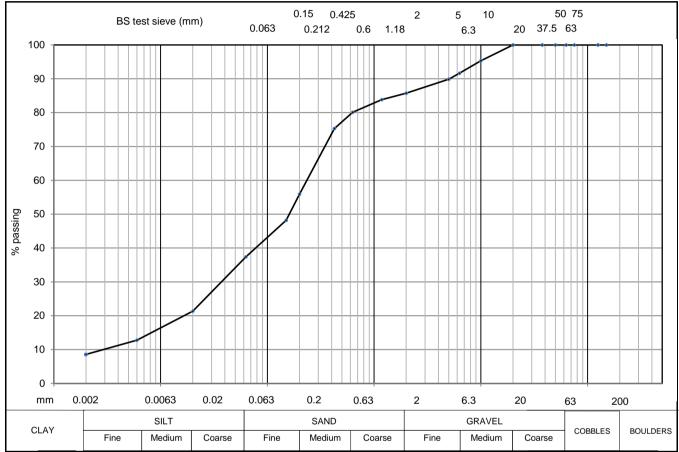
soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	34						
SILT	65	150		5	100	20	87
SILT & CLAY	99						
SAND	1	75		2	100	6	55
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	34
test method(s)	5.2 & 5.4	50		0.63	100		
test method		1					
		37.5		0.425	100		
5.2 - sieving							
		20		0.2	100		
5.3 - sedimentation by hyd	drometer						
		10		0.15	99		
5.4 - sedimentation by pip	5.4 - sedimentation by pipette						
		6.3		0.063	99		
remarks					C	ONTRACT	CHECKED

## PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH11


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 26D

SAMPLE DEPTH (m) 8.60

DESCRIPTION Reddish brown slightly gravelly sandy SILT

SPECIMEN TOP (m) 8.60





soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	9						
SILT	29	150		5	90	20	21
SILT & CLAY	37						
SAND	48	75		2	86	6	13
GRAVEL	14						
COBBLE & BOULDER	0	63		1.18	84	2	9
test method(s)	5.2 & 5.4						
test method(s)	5.2 & 5.4	50		0.63	80		
test method							
		37.5		0.425	75		
5.2 - sieving							
		20	100	0.2	56		
5.3 - sedimentation by hydrometer							
		10	95	0.15	48		
5.4 - sedimentation by pipette							
		6.3	92	0.063	37		

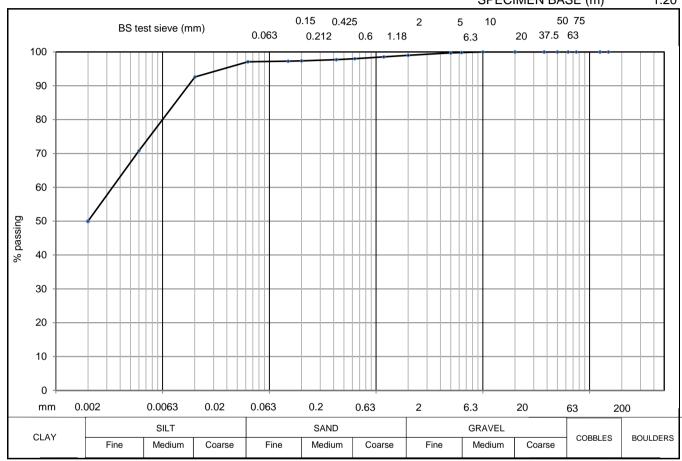
## PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5



1.00

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. TP05


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 4D

SAMPLE DEPTH (m) 1.00

DESCRIPTION Greyish brown slightly gravelly slightly sandy silty CLAY

SPECIMEN TOP (m)

SPECIMEN BASE (m) 1.20

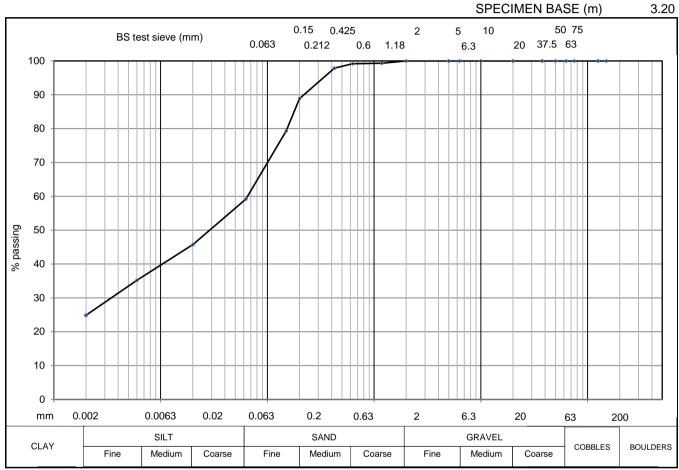


soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	50						
SILT	47	150		5	100	20	93
SILT & CLAY	97						
SAND	2	75		2	99	6	71
GRAVEL	1						
COBBLE & BOULDER	0	63		1.18	99	2	50
test method(s)	5.2 & 5.4	50		0.63	98		
test method							
		37.5		0.425	98		
5.2 - sieving							
		20		0.2	97		
5.3 - sedimentation by hydrometer							
		10	100	0.15	97		
5.4 - sedimentation by pipette							
		6.3	100	0.063	97		
remarks						ONTRACT	CHECKED

## PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5




CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. TP06

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 8D

SAMPLE DEPTH (m) 3.00

DESCRIPTION Reddish brown sandy silty CLAY

SPECIMEN TOP (m) 3.00



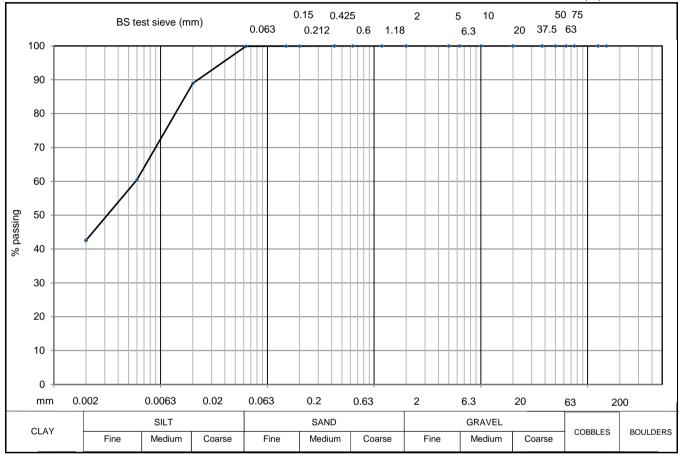
soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	25						
SILT	34	150		5	100	20	46
SILT & CLAY	59						
SAND	41	75		2	100	6	35
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	99	2	25
test method(s)	5.2 & 5.4	50		0.63	99		
test method							
		37.5		0.425	98		
5.2 - sieving							
		20		0.2	89		
5.3 - sedimentation by hy	drometer						
		10		0.15	79		
5.4 - sedimentation by pipette							
		6.3		0.063	59		
romarks						ONTRACT	CHECKED

## PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. TP07


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 1B

SAMPLE DEPTH (m) 0.50

DESCRIPTION Greyish brown silty CLAY with rare rootlets

SPECIMEN TOP (m) 0.50



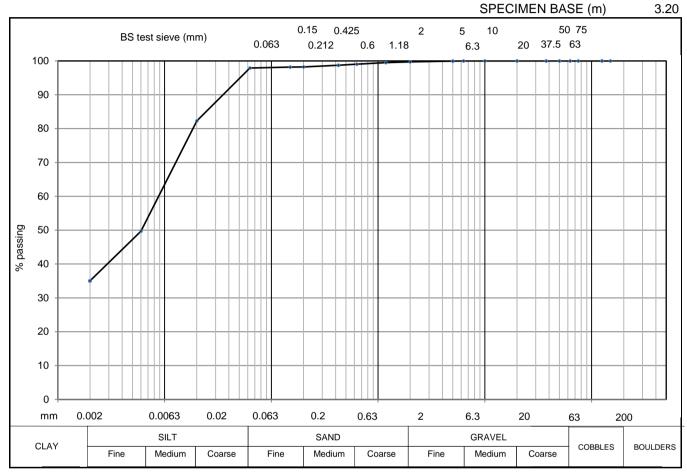


soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve % pass		BS test sieve (µm)	% finer
CLAY	43						
SILT	57	150		5		20	89
SILT & CLAY	100						
SAND	0	75		2		6	60
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	43
test method(s)	5.2 & 5.4	50		0.63	100		
test method							
		37.5		0.425	100		
5.2 - sieving							
		20		0.2	100		
5.3 - sedimentation by hy	drometer						
		10		0.15	100		
5.4 - sedimentation by pipette							
		6.3		0.063	100		
remarks						ONTRACT	CHECKED

## PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5




CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. TP07

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 8D

DESCRIPTION Grey slightly sandy organic silty CLAY with rare rootlets

SAMPLE DEPTH (m) 3.00

SPECIMEN TOP (m) 3.00



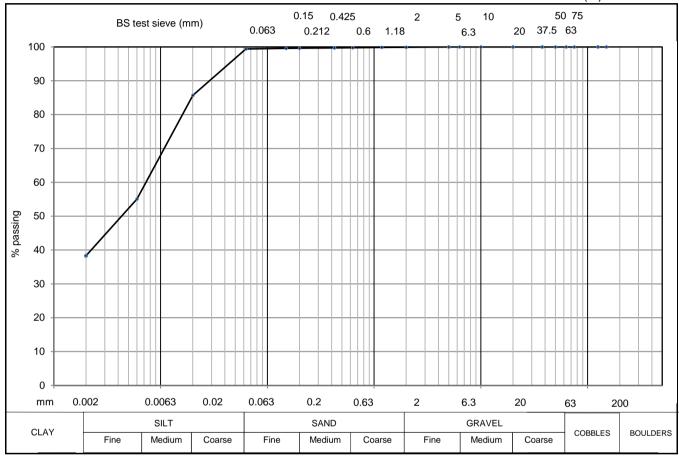
soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	35						
SILT	63	150		5	100	20	82
SILT & CLAY	98						
SAND	2	75		2	100	6	50
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	35
test method(s)	5.2 & 5.4	50		0.63	99		
test method		1					
		37.5		0.425	99		
5.2 - sieving							
		20		0.2	98		
5.3 - sedimentation by hyd	drometer						
5.4 - sedimentation by pipette		10		0.15	98		
		6.3	100	0.063	98		
remarks	•	•			(	CONTRACT	CHECKED

## PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. TP09


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 7B

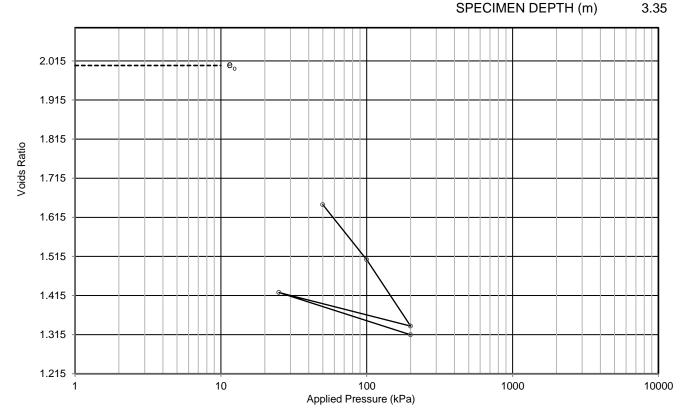
SAMPLE DEPTH (m) 2.80

DESCRIPTION Greyish brown silty CLAY

SPECIMEN TOP (m) 2.80

SPECIMEN BASE (m) 3.30

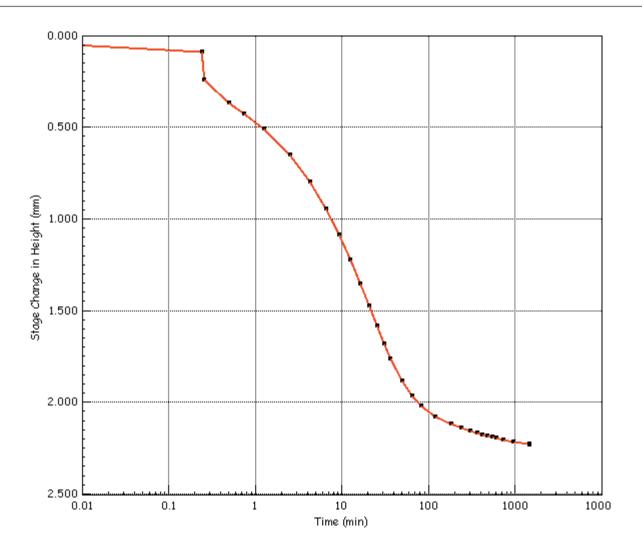



soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm) % passing		BS test sieve (µm)	% finer
CLAY	38						
SILT	61	150		5	100	20	86
SILT & CLAY	99						
SAND	0	75		2	100	6	55
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	38
test method(s)	5.2 & 5.4	50		0.63	100		
test method		1					
		37.5		0.425	100		
5.2 - sieving							
		20		0.2	100		
5.3 - sedimentation by hy	drometer						
		10		0.15	100		
5.4 - sedimentation by pipette							
		6.3	100	0.063	99		
romarks					(	ONTRACT	CHECKED

### **DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES**

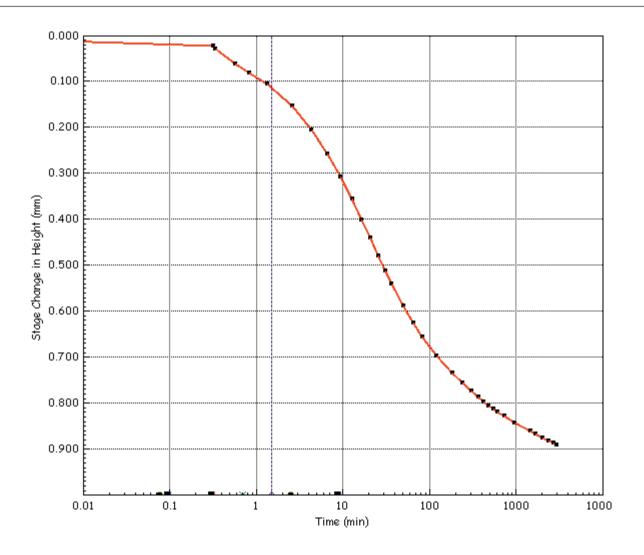





BH10 **CLIENT** CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION 14UT SAMPLE No./TYPE DESCRIPTION Grey slightly gravelly slightly sandy silty organic CLAY SAMPLE DEPTH (m) 3.20

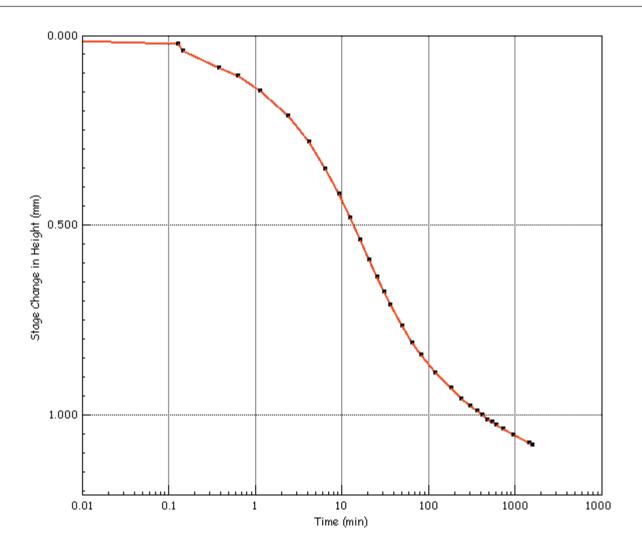


test and sample details			test results				
			pressure	voids	laboratory c	oefficien	ts of
specimen diameter	mm	63.48	stage	ratio	compressibility	conso	lidation
specimen height	mm	18.42	(IcDa)		mv	Cv	Csec
initial moisture content	%	74.8	(kPa)		(m2/MN)	(m:	2/yr)
final moisture content	%	51.0					
initial bulk density	Mg/m3	1.57	50	1.647	2.4	0.51	
initial dry density	Mg/m3	0.90	100	1.507	1.1	0.39	0.0065
initial voids ratio		2.003	200	1.337	0.68	0.39	
initial degree of saturation	%	101	25	1.423	0.21		
particle density	Mg/m3	#2.70	200	1.315	0.26	1.4	
swelling pressure	kPa	N/A					
P'o to P'o +100 kPa		-					
laboratory temperature	оС	20 ± 2					
method of time fitting		root time					
remarks # denotes particle de		signed an assume	d value		CONTRACT	CHE	CKED
load frame correction	25220	-	.D				


35338 TB

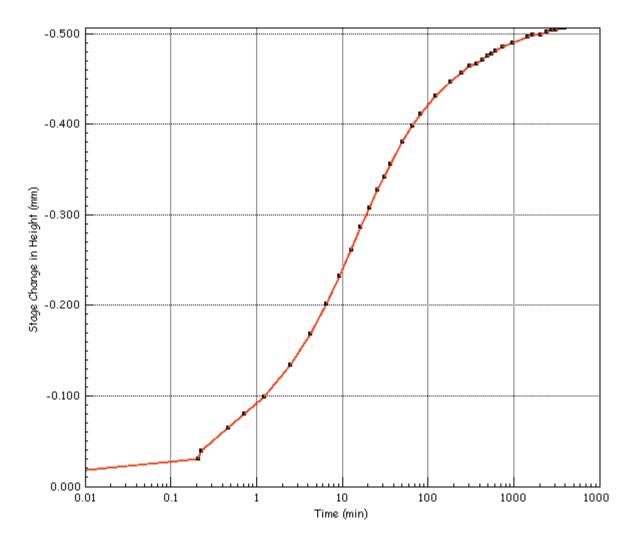
Vertical Stress	σ' _i	(kPa)	50
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.048
Height Settlement	∆Ls	(mm)	2.183
Voids Ratio	e f		-0.227




ACT TO THE	Test Method	BS1377 - 5 : 1990	: Clause 3	Test Name FRAME 9 Database: .\SQLEXPRESS \ GEL		
	Site Reference			Test Date	22/07/2019	
A SHOW THE	Jobfile	35338		Sample	14UT	
	Client	CARDFF PARKW	/AY	Borehole	BH10	
	Operator T	A/JT/JG	Checked *		Approved	*

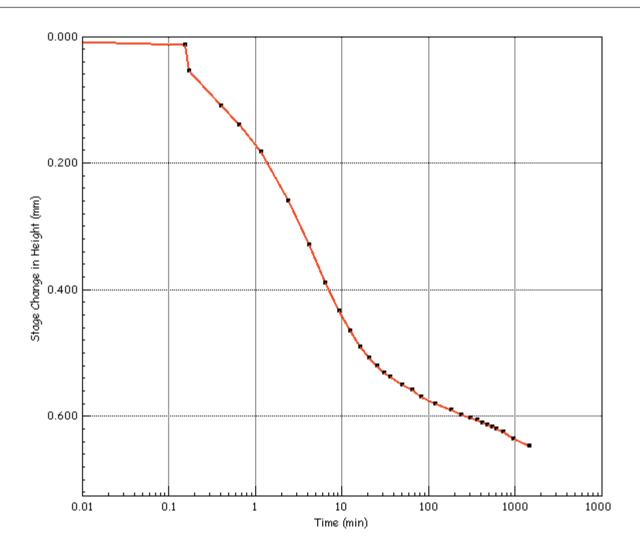
Vertical Stress	σ';	(kPa)	100
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.075
Height Settlement	ΔLs	(mm)	3.046
Voids Ratio	e f		-0.265




		Test Method BS1377 - 5 : 1990 : Clause 3				Test Name	FRAME 9	
	-~~					Database: .\SQLEXPRESS \ GEL		
	800 7 D	Site Reference				Test Date	22/07/2019	
	SHAD IN	Jobfile			Sample	14UT		
		Client	CARDFF PARKW	/AY		Borehole	BH10	
		Operator	TA/JT/JG	Checked	k		Approved	*

Vertical Stress	σ'i	(kPa)	200
Initial Temperature	T i	(oC)	20.0
Frame Correction	L corr	(mm)	0.106
Height Settlement	ΔLs	(mm)	4.088
Voids Ratio	e f		-0.310




ACT TO THE	Test Method	BS1377 - 5 : 1990	: Clause 3	Test Name FRAME 9 Database: .\SQLEXPRESS \ GEL		
	Site Reference			Test Date	22/07/2019	
A SHOW THE	Jobfile	35338		Sample	14UT	
	Client	CARDFF PARKW	/AY	Borehole	BH10	
	Operator T	A/JT/JG	Checked *		Approved	*

Vertical Stress	σ'i	(kPa)	25
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.126
Height Settlement	ΔLs	(mm)	3.560
Voids Ratio	ef		-0.287

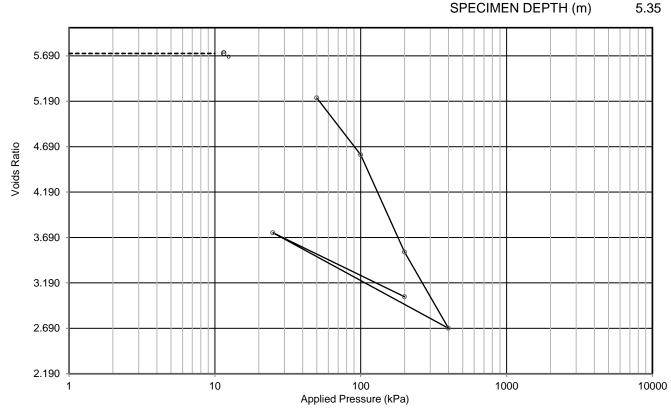


	Test Method	BS1377 - 5 : 199	M · Clause 3		Test Name	FRAME 9		
~~~		201011 01 10001 0144000				Database: .\SQLEXPRESS \ GEL		
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Site Reference	Site Reference			Test Date	22/07/2019		
1 SHADE	Jobfile	35338			Sample	14UT		
	Client	CARDFF PARK	WAY		Borehole	BH10		
	Operator	TA/JT/JG	Checked	*		Approved	*	

Vertical Stress	σ'i	(kPa)	200
Initial Temperature	Τi	(oC)	20.0
Frame Correction	Lcorr	(mm)	0.106
Height Settlement	ΔLs	(mm)	4.224
Voids Ratio	ef		-0.316

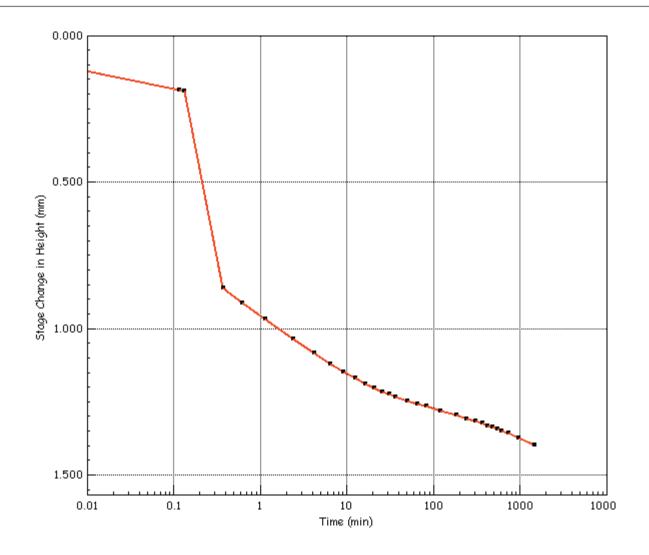
	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 9	
4000	- I est ivietilou	B31377 - 3 . 1990	. Clause 3	Database: .\SQLEXPRESS \ GEL		
1 00 7 7 Pa	Site Reference			Test Date	22/07/2019	
SHOW IN	Jobfile	35338		Sample	14UT	
	Client	CARDFF PARKW	/AY	Borehole	BH10	
	Operator	TA/JT/JG	Checked *		Approved	*

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

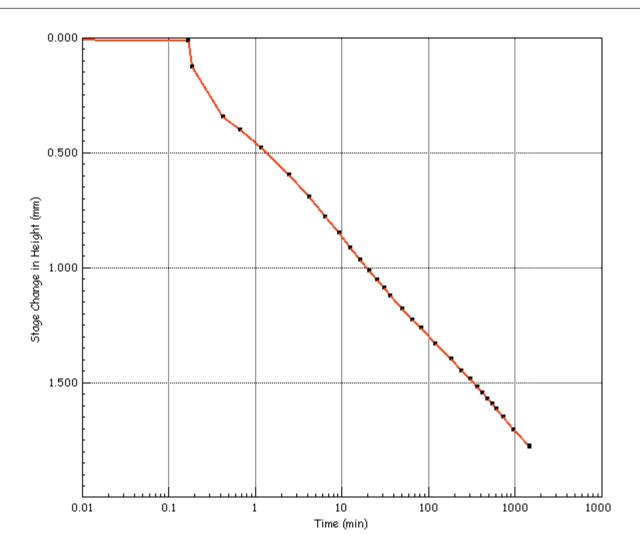


CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH10

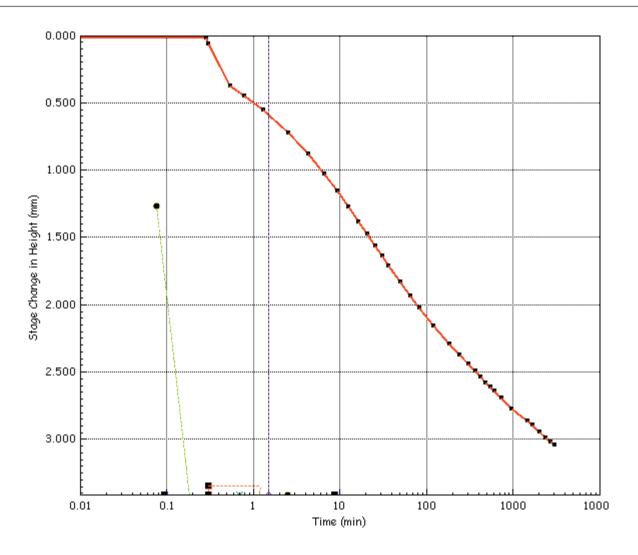
SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 20UT


DESCRIPTION Black slightly gravelly slightly sandy clayey PEAT SAMPLE DEPTH (m) 5.20

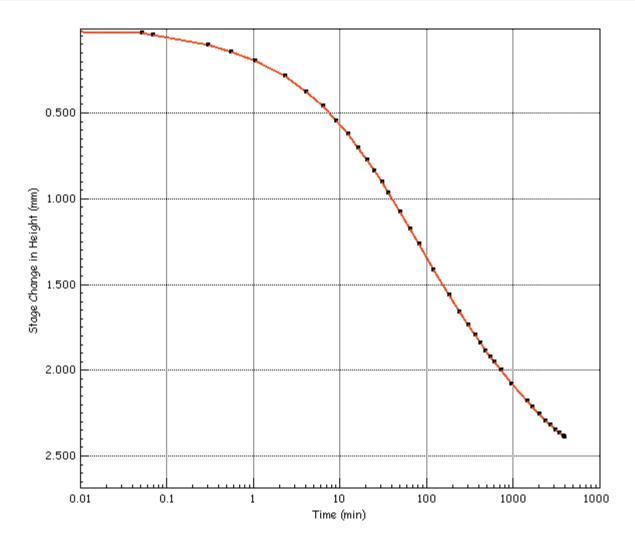
SPECIMEN DEPTH (m) 5.35


test and sample details			test results				
			pressure	voids	laboratory c	oefficient	s of
specimen diameter	mm	63.55	stage	ratio	compressibility	consoli	idation
specimen height	mm	18.94	(kPa)		m_{v}	C_v	C_sec
nitial moisture content	%	355.9	(KFa)		(m^2/MN)	(m ²	/yr)
final moisture content	%	235.2					
nitial bulk density	Mg/m³	0.98	50	5.226	1.5	3.6	
nitial dry density	Mg/m³	0.22	100	4.601	2.0	1.1	
nitial voids ratio		5.716	200	3.529	1.9	0.38	0.028
nitial degree of saturation	%	90	400	2.690	0.93	0.12	
particle density	Mg/m³	#1.45	25	3.742	0.76		
swelling pressure	kPa	N/A	200	3.038	0.85	0.25	
P'o to P'o +100 kPa		-					
aboratory temperature	°C	20 ± 2					
method of time fitting		root time					
remarks # denotes particle de	nsity has been ass	igned an assume	d value		CONTRACT	CHEC	CKE
load frame correction	s applied				35338	т	В

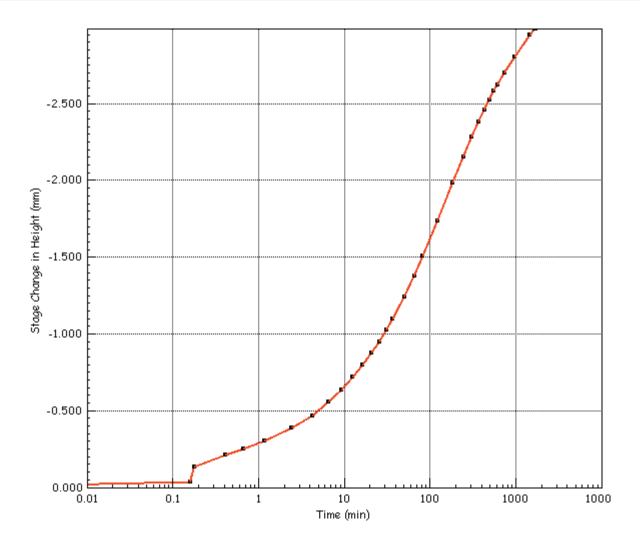
Vertical Stress	σ'i	(kPa)	50
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.014
Height Settlement	ΔLs	(mm)	1.382
Voids Ratio	e f		-0.193


		Test Method	BS1377 - 5 : 1990	· Clause 3		Test Name	FRAME 8	
	-~~					Database: .\SQLEXPRESS \ GEL		
	2 7 Pa	Site Reference				Test Date	22/07/2019	
	SHAD IN	Jobfile	35338			Sample	20UT	
		Client	CARDFF PARKW	/AY		Borehole	BH10	
L		Operator	TA/JT/JG	Checked '	r		Approved	*

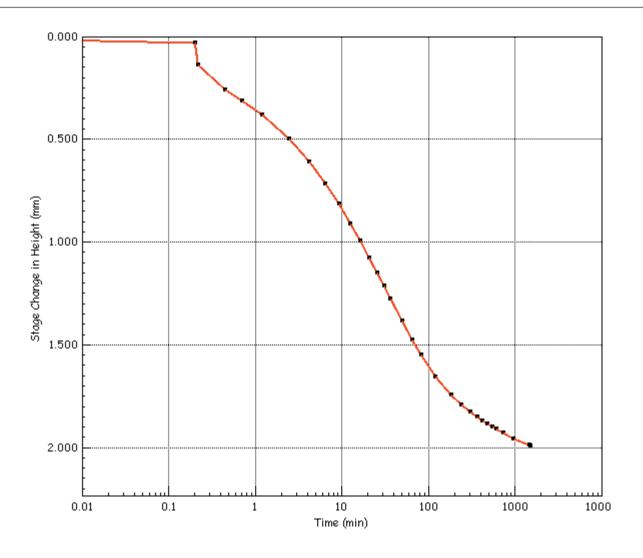
Vertical Stress	σ'i	(kPa)	100
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.028
Height Settlement	ΔLs	(mm)	3.145
Voids Ratio	e f		-0.269


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 8	
2000		DS 1377 - 3 . 1990	. Clause 3	Database: .\SQLEXPRESS \ GEL		
activ-1	Site Reference			Test Date	22/07/2019	
SHAD IN	Jobfile	35338		Sample	20UT	
	Client	CARDFF PARKW	/AY	Borehole	BH10	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ'i	(kPa)	200
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.043
Height Settlement	ΔLs	(mm)	6.168
Voids Ratio	e f		-0.400


	Test Method	Test Method BS1377 - 5 : 1990 : Clause 3			Test Name	FRAME 8	
-~~		DO 1077 - 0 : 1000	. Olause 5		Database: .\SQLEXPRESS \ GEL		
2 7 Pa	Site Reference				Test Date	22/07/2019	
SHAD IN	Jobfile	35338			Sample	20UT	
	Client	CARDFF PARKW	/AY		Borehole	BH10	
	Operator	TA/JT/JG	Checked	*		Approved	*

Vertical Stress	σ';	(kPa)	400
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.066
Height Settlement	ΔLs	(mm)	8.534
Voids Ratio	ef		-0.503


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 8	
2000				Database: .\SQLEXPRESS \ GEL		
2000 7 D	Site Reference			Test Date	22/07/2019	
SHOW IN	Jobfile	35338		Sample	20UT	
	Client	CARDFF PARKW	/AY	Borehole	BH10	
	Operator	TA/JT/JG	Checked *		Approved	*

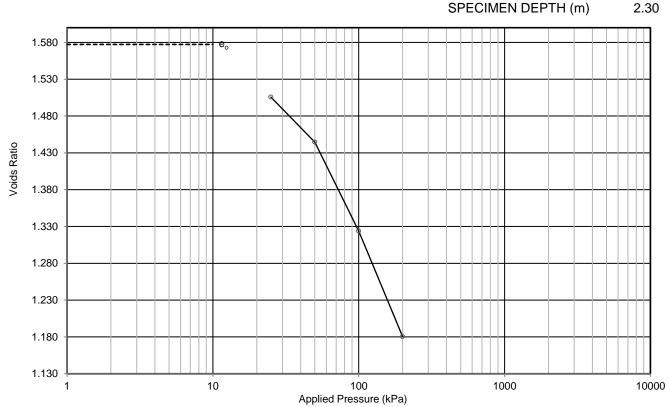
Vertical Stress	σ'i	(kPa)	25
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.040
Height Settlement	ΔLs	(mm)	5.567
Voids Ratio	e f		-0.374

	Test Method	BS1377 - 5 : 19	00 · Clause 3		Test Name	FRAME 8	
	Test Wethou	B31377 - 3 . 19	90 . Clause 5		Database: .\S0	QLEXPRESS \ GEL	-
8000 7 D	Site Referenc	е			Test Date	22/07/2019	
1 SHANG	Jobfile	35338			Sample	20UT	
	Client	CARDFF PARI	KWAY		Borehole	BH10	
	Operator	TA/JT/JG	Checked	*		Approved	*

Vertical Stress	- 1·	(kPa)	200
	σ'i		
Initial Temperature	Τį	(oC)	20.0
Frame Correction	L corr	(mm)	0.043
Height Settlement	ΔLs	(mm)	7.554
Voids Ratio	e f		-0.460
	•		

	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 8	
		ВЗ 1377 - 3 . 1990	. Clause 3	Database: .\SQLE	EXPRESS \ GEL	
1000 7 P	Site Reference			Test Date	22/07/2019	
SHE SHE	Jobfile	35338		Sample	20UT	
	Client	CARDFF PARKW	/AY	Borehole	BH10	
	Operator	TA/JT/JG	Checked *		Approved	*

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

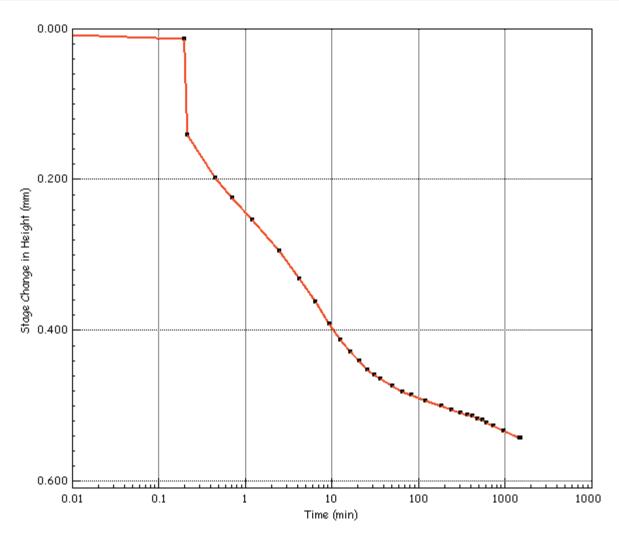


CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH11

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 9UT

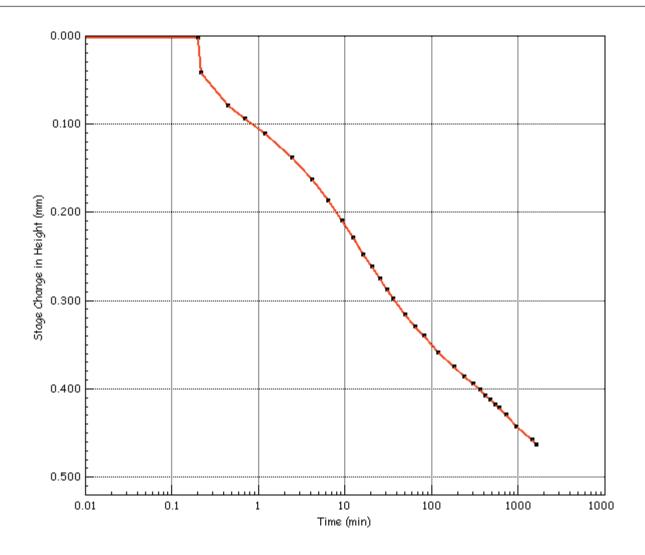
DESCRIPTION Grey mottled brown slightly sandy silty organic CLAY SAMPLE DEPTH (m) 2.20

SPECIMEN DEPTH (m) 2.30

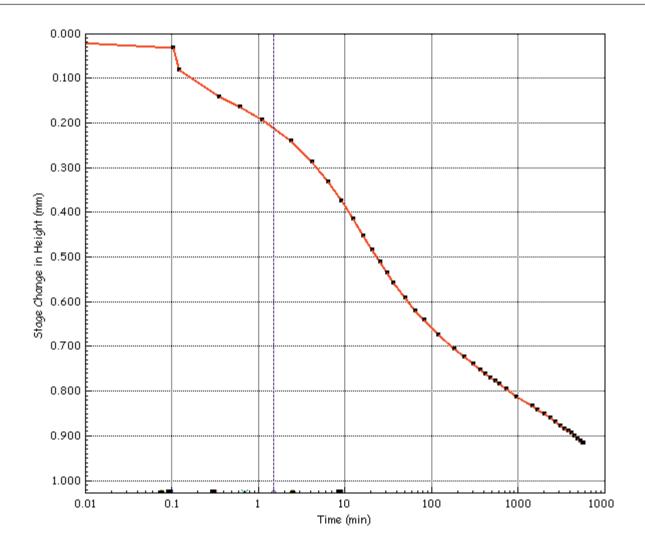


test and sample details			test results				
			pressure	voids	laboratory c	oefficient	s of
specimen diameter	mm	63.48	stage	ratio	compressibility	consoli	idation
specimen height	mm	19.01	(IcDa)		mv	Cv	Csec
initial moisture content	%	55.5	(kPa)		(m2/MN)	(m2	2/yr)
final moisture content	%	46.7					
initial bulk density	Mg/m3	1.63	25	1.506	1.1	1.7	
initial dry density	Mg/m3	1.05	50	1.445	0.98	0.75	
initial voids ratio		1.577	100	1.324	0.99	0.67	0.0082
initial degree of saturation	%	95	200	1.180	0.62	0.61	
particle density	Mg/m3	#2.70					
swelling pressure	kPa	N/A					
P'o to P'o +100 kPa		-					
laboratory temperature	оС	20 ± 2					
method of time fitting		root time					
remarks # denotes particle de	nsity has been ass	igned an assume	d value		CONTRACT	CHEC	CKED
load frame correction	ns applied						

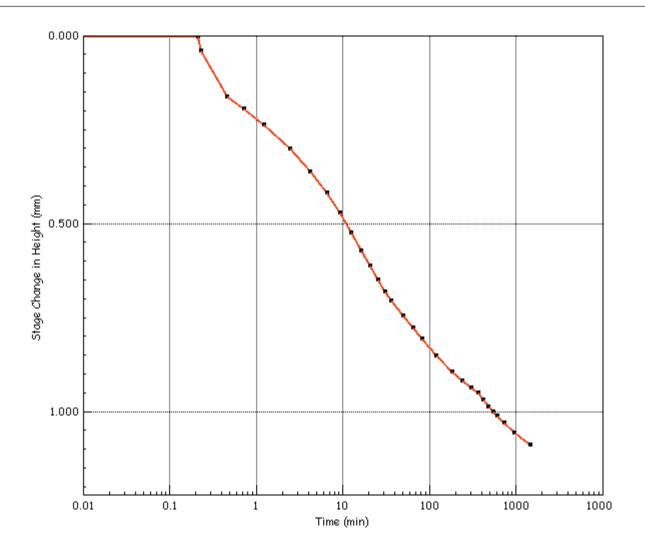
35338


TB

	m v C sec			
	CV			
	t 90			
	t 50			
	Τf			
/oids Ratio	e f		-0.156	
Height Settlement	ΔLs	(mm)	0.528	
Frame Correction	L corr	(mm)	0.014	
nitial Temperature	Τi	(oC)	20.0	
/ertical Stress	σ';	(kPa)	25	


Г		Test Method	BS1377 - 5 : 1990	· Clause 3		Test Name	FRAME 7	
	~~		DO 1077 - 0 : 1000	. Olause s		Database: .\SQLI	EXPRESS \ GEL	-
	8000 7 D	Site Reference				Test Date	23/07/2019	
	SHOW IN	Jobfile	35338			Sample	FRAME 7	
		Client	CARDFF PARKW	/AY		Borehole	BH11	
		Operator	TA/JT/JG	Checked	*		Approved	*

Vertical Stress	σ' _i	(kPa)	50
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.026
Height Settlement	ΔLs	(mm)	0.979
Voids Ratio	e f		-0.175


Г		Test Method	BS1377 - 5 : 1990	· Clause 3		Test Name	FRAME 7	
	~~		BO 1077 - 0 : 1000	. Olause s		Database: .\SQLI	EXPRESS \ GEL	-
	8000 7 D	Site Reference				Test Date	23/07/2019	
	SHOW IN	Jobfile	35338			Sample	FRAME 7	
		Client	CARDFF PARKW	/AY		Borehole	BH11	
		Operator	TA/JT/JG	Checked	*		Approved	*

Vertical Stress	σ';	(kPa)	100
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.047
Height Settlement	ΔLs	(mm)	1.870
Voids Ratio	ef		-0.214

	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 7	
- m	- I est ivietilou	DO 1377 - 3 . 1990	. Clause 3	Database: .\SQLE	EXPRESS \ GEL	
8000 7 B	Site Reference			Test Date	23/07/2019	
SHOW IN	Jobfile	35338		Sample	FRAME 7	
	Client	CARDFF PARKW	/AY	Borehole	BH11	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ';	(kPa)	200
Initial Temperature	Τi	(oC)	20.0
Frame Correction	Lcorr	(mm)	0.078
Height Settlement	ΔLs	(mm)	2.927
Voids Ratio	ef		-0.260

	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 7	
- m	- I est ivietilou	DO 1377 - 3 . 1990	. Clause 3	Database: .\SQLE		
8000 7 B	Site Reference			Test Date	23/07/2019	
SHOW IN	Jobfile	35338		Sample	FRAME 7	
	Client	CARDFF PARKW	/AY	Borehole	BH11	
	Operator	TA/JT/JG	Checked *		Approved	*

UNDRAINED TRIAXIAL COMPRESSION

BS.1377: PART 7:1990:8

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole	san	nple	specimen	code	moisture	content	dime	nsions	den	sity	cell	rate of	deviator	failure	failure	shear		
/trial pit	no./type	depth	depth		initial	final	length	diameter	bulk	dry	pressure	strain	stress	strain	mode	strength*	description and	d remarks
no.		(m)	(m)								(kPa)	(%/min)	(kPa)	(%)		(kPa)		
					(%)	(%)	(mm)	(mm)	(Mg/m3)	(Mg/m3)								
BH10	14UT	3.20	3.40	UU100	59.7	66.3	206	104	1.62	1.01	60	2.0	12	8.3	I	6	Grey slightly gravell	y slightly sandy
BH10	20UT	5.20	5.40	UU100	367.2	379.3	206	104	1.04	0.22	95	2.0	89	5.8	S	45	Black slightly gravel clayey PEAT	ly slightly sandy
general remarks:					code:	Florida de la constante de la		failure mode			membrane ty			- 77 - D	<u> </u>	<u> </u>	CONTRACT	CHECKED
* shear strength tal membrane correcti sample taken vertic	on applied cally (unless oth	erwise specifi		-	M - multi stage S - set of three	е		B - barrel (plas S - shear (britt I - intermediate	tle failure) e		38 - 0.2mm 70 - 0.4mm	ne used (unles	s otherwise spe	ecified)			35338	ТВ
strain rate 2%/min			ea)		R - remoulded			O - other (see			100 - 0.4mm						00000	

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole	san	nple	specimen	diameter	height H	11/5	moisture	bulk	loading	time to	UCS	
/trial pit	no./type	depth	depth	D	Н	H/D	content	density	rate	failure		description, codes and remarks
no.		(m)	(m)	(mm)	(mm)		(%)	(Mg/m3)	(kN/min)	(min:sec)	(MPa)	
BH11	35Cs	13.50	13.50	89.1	266.6	2.99	10.2	2.35	1	03:56	0.63	Reddish brown MUDSTONE, N,
БПП	3308	13.50	13.30	09.1	200.0	2.99	10.2	2.33	'	03.30	0.03	AxCa
gonoral ro												

general remarks

sample obtained from vertically drilled core (unless specified), test machine - VJT6000

coding: moisture condition sample storage failure mode

N - natural moisture content U - not wrapped Ax - axial cleavage

F - fully saturated F - wrapped in cling film/foil Ca - cataclasis S - soaked W - waxed Sh - shear

35338 P - air/partially dried G - contained in sealed Geoline Ex - explosive Ot - other

CONTRACT

CHECKED

TB

POINT LOAD STRENGTH TEST

I.S.R.M. Suggested Methods: 2007 Edition

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole /trial pit	sample depth	test type	test orien- tation	moisture condition	width	length	platen sep.	failure load	equiv. diam.	Is	size factor	Is(50)	doorintion
no.	(m)		tation		W	L	D	Р	De	(MPa)		(MPa)	description and remarks
					(mm)	(mm)	(mm)	(kN)	(mm)				
BH10	13.55	D	Y	Р		30	90	0.05	90.00	0.01	1.30	0.01	Reddish brown MUDSTONE
BH10	13.55	А	х	Р	90		35	0.56	63.33	0.14	1.11	0.16	Reddish brown MUDSTONE
BH10	16.70	I	U	Р	90	110	65	6.23	86.30	0.84	1.28	1.07	Pinkish brown SANDSTONE
3H10	23.53	ı	U	Р	80	140	90	0.86	95.75	0.09	1.34	0.13	Purplish brown MUDSTONE
BH10	24.93	D	Y	Р		60	90	1.77	90.00	0.22	1.30	0.28	Purplish brown MUDSTONE
BH10	24.93	А	Х	Р	90		40	2.19	67.70	0.48	1.15	0.55	Purplish brown MUDSTONE
BH11	13.38	ı	U	Р	80	85	40	0.23	63.83	0.06	1.12	0.06	Orangish brown MUDSTONE

general remarks

tests carried out in accordance with I.S.R.M.(2007): Suggested Methods for Determining Point Load Strength test machine PLM02

test type	test orientation relative	e to discontinuities	moisture condition	CONTRACT	CHECKED
A - axial	X - perpendicular	U - unknown	N - natural moisture content		
D - diametral	Y - parallel		P - partially air dried	35338	TB
I - irregular lump	Z - oblique		S - soaked		

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 19-24373-1

Initial Date of Issue: 25-Jul-2019

Client Geotechnical Engineering Ltd

Client Address: Centurion House

Olympus Park Quedgeley Gloucester Gloucestershire

GL2 4NF

Contact(s): GEL

Wendy Jones

Project 35338 C Cardiff Parkway Initial Ground

Investigation

Quotation No.: Date Received: 19-Jul-2019

Order No.: 35338/WJ Date Instructed: 19-Jul-2019

No. of Samples: 12

Turnaround (Wkdays): 5 Results Due: 25-Jul-2019

Date Approved: 25-Jul-2019

Approved By:

Details: Robert Monk, Technical Manager

Project: 35338 C Cardiff Parkway Initial Ground Investigation

Client: Geotechnical Engineering Ltd		Che	ntest J	ob No.:	19-24373	19-24373	19-24373	19-24373	19-24373	19-24373	19-24373	19-24373	19-24373
Quotation No.:		Chemte	st Sam	ple ID.:	860638	860639	860640	860641	860642	860643	860644	860645	860646
		Cli	ent Sam	ple ID.:	2D	10D	1B	19D	23D	29D	4D	8D	1B
		Sa	ample Lo	ocation:	BH10	BH10	BH11	BH11	BH11	BH11	TP05	TP06	TP07
			Sampl	е Туре:	SOIL								
		Top Depth (m):			0.2	1.9	0.3	5.2	7.3	10.9	1	3	0.5
		Bot	tom De	pth (m):	0.4	2	0.5	5.65	7.4	11	1.2	3.2	0.7
			Date Sa	ampled:	18-Jul-2019								
Determinand	Accred.	SOP	Units	LOD									
Moisture	N	2030	%	0.020	20	29	20	51	36	11	24	16	21
pH (2.5:1)	N	2010		N/A	7.3	8.0	8.4	7.9	8.3	8.9			
Magnesium (Water Soluble)	N	2120	g/l	0.010	< 0.010	0.020	< 0.010	0.038	0.044	0.015			
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	0.31	< 0.010	0.47	0.57	< 0.010			
Total Sulphur	U	2175	%	0.010	0.044	0.34	0.055	2.0	1.1	0.039			
Chloride (Water Soluble)	U	2220	g/l	0.010	< 0.010	0.042	0.015	0.84	0.68	0.062			
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010			
Sulphate (Acid Soluble)	U	2430	%	0.010	0.016	0.11	0.036	0.37	0.14	0.020			
LOI	U	2610	%	0.10				30					
Organic Matter	U	2625	%	0.40				19			0.64	< 0.40	0.45

Project: 35338 C Cardiff Parkway Initial Ground Investigation

Client: Geotechnical Engineering Ltd		Che	mtest J	ob No.:	19-24373	19-24373	19-24373
Quotation No.:	(Chemte	st Sam	ple ID.:	860647	860648 6D TP08 SOIL 2 2.2	860649
		Cli	ent Sam	ple ID.:	8D	6D	7B
		Sa	ample L	ocation:	TP07	TP08	TP09
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top De	pth (m):	3	2	2.8
				pth (m):		2.2	3.3
			Date Sa	ampled:	18-Jul-2019	18-Jul-2019	18-Jul-2019
Determinand	Accred.	SOP	Units	LOD			
Moisture	N	2030	%	0.020	32	15	33
pH (2.5:1)	N	2010		N/A			
Magnesium (Water Soluble)	N	2120	g/l	0.010			
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010			
Total Sulphur	U	2175	%	0.010			
Chloride (Water Soluble)	U	2220	g/l	0.010			
Nitrate (Water Soluble)	N	2220	g/l	0.010			
Sulphate (Acid Soluble)	U	2430	%	0.010			
LOI	U	2610	%	0.10			
Organic Matter	U	2625	%	0.40	1.7	0.50	1.9

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measurement by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 19-24373-1

Initial Date of Issue: 25-Jul-2019

Client Geotechnical Engineering Ltd

Client Address: Centurion House

Olympus Park Quedgeley Gloucester Gloucestershire

GL2 4NF

Contact(s): GEL

Wendy Jones

Project 35338 C Cardiff Parkway Initial Ground

Investigation

Quotation No.: Date Received: 19-Jul-2019

Order No.: 35338/WJ Date Instructed: 19-Jul-2019

No. of Samples: 12

Turnaround (Wkdays): 5 Results Due: 25-Jul-2019

Date Approved: 25-Jul-2019

Approved By:

Details: Robert Monk, Technical Manager

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 19-24728-1

Initial Date of Issue: 31-Jul-2019

Client Geotechnical Engineering Ltd

Client Address: Centurion House

Olympus Park Quedgeley Gloucester Gloucestershire

GL2 4NF

Contact(s): Wendy Jones

GEL

Project 35338 C Cardiff Parkway Initial Ground

Investigation

Quotation No.: Date Received: 24-Jul-2019

Order No.: 35338 /WJ Date Instructed: 24-Jul-2019

No. of Samples: 3

Turnaround (Wkdays): 5 Results Due: 30-Jul-2019

Date Approved: 31-Jul-2019

Approved By:

Details: Amy Parekh-Pross, Technical Projects

Manager

Project: 35338 C Cardiff Parkway Initial Ground Investigation

Client: Geotechnical Engineering Ltd		Che	mtest J	ob No.:	19-24728	19-24728	19-24728
Quotation No.:	(Chemte	st Sam	ple ID.:	862386	862387 20UT BH10 SOIL 5.20 5.65	862388
		Cli	ent Sam	ple ID.:	14UT	20UT	9UT
		Sa	ample L	ocation:	BH10	BH10	BH11
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top De	pth (m):	3.20	5.20	2.20
		Bot	tom De	pth (m):	3.65	5.65	2.65
			Date Sa	ampled:	23-Jul-2019	23-Jul-2019	23-Jul-2019
Determinand	Accred.	SOP	Units	LOD			
Moisture	N	2030	%	0.020	36	77	35
pH (2.5:1)	N	2010		N/A		7.7	8.3
Magnesium (Water Soluble)	N	2120	g/l	0.010		0.042	0.020
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010		0.47	0.16
Total Sulphur	U	2175	%	0.010		7.1	0.53
Chloride (Water Soluble)	U	2220	g/l	0.010		0.58	0.12
Nitrate (Water Soluble)	N	2220	g/l	0.010		< 0.010	< 0.010
Sulphate (Acid Soluble)	U	2430	%	0.010		0.94	0.11
LOI	U	2610	%	0.10		65	
Organic Matter	U	2625	%	0.40	2.4		1.6

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measurement by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Version No.

For the attention of James Taylor/Edward Crimp Page No. 1 of 47

Date of Issue 13/08/2019

TEST REPORT

PROJECT/SITE	CARDIFF PARKWAY INITIAL GROUND INVESTIGATION	Samples received	18/07/2019
GEL REPORT NUMBER	35338	Schedule received	18/07/2019
Your ref/PO:		Testing commenced	23/07/2019
Test report refers to	Schedule D	Status	Final

SUMMARY OF RESULTS ATTACHED

TEST METHOD & DESCRIPTION	(QUANTITY	ACCREDITED
			TEST
BS EN ISO 17892-1: 2014:5. Water Content		6	YES
BS1377: Part 2: 1990:4.2-4.4&5.2-5.4, Liquid & Plastic Limits		6	YES
BS EN ISO 17892-4: 2016: 5.2, Particle Size Distribution - Wet Sieve		9	YES
BS EN ISO 17892-4: 2016: 5.4, Particle Size Distribution - Pipette		8	YES
BS1377: Part 5: 1990:3, Consolidation		4	YES
BS1377: Part 7: 1990:8&9, Undrained Triaxial Compression		4	YES
ISRM: Suggested Methods: 2007: Uniaxial Compressive Strength of Rock		3	YES
ISRM: 2007: Point Load Strength Test		10	YES
BRE SD1 Suite (Subcontracted)		6	YES/NO
Loss On Ignition (Subcontracted)		2	YES
Organic Matter Content (Subcontracted)		3	YES

Remarks

This report may not be partially reproduced without written permission from this laboratory.

Approved Signatories:

W Jones (Laboratory Manager) E Crimp (Senior Engineer)

J Hanson (Director) N Parry (Director)

Doc TR01 Rev No. 20 Revision date 09/10/17 DC:JH

Geotechnical Engineering Ltd

Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

Registered number: 00700739 **VAT Number:** 682 5857 89

www.geoeng.co.uk

geotech@geoeng.co.uk TEL: 01452 527743 Fax: 01452 729314

Payments: Geotechnical Engineering Limited Sort code: 16-22-11 Bank account: 11125135

LIQUID AND PLASTIC LIMITS

BS.1377: PART 2: 1990: 4 and 5

SITE

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

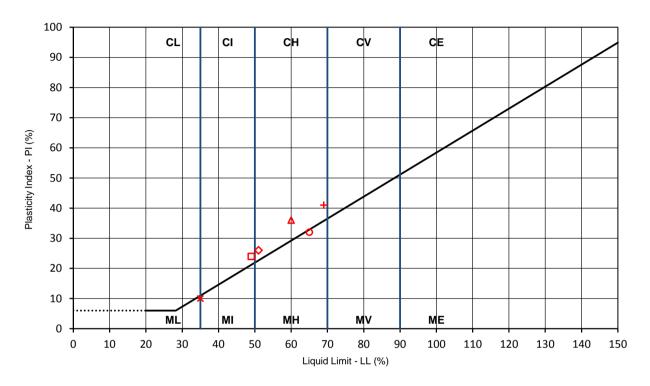
CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole	san	nple	specimen	natural	specimen	fraction	liquid	plastic	plasticity	
/trial pit	no./type	depth	depth	water content	preparation and test	>0.425 mm	limit	limit	index	description and remarks
no.		(m)	(m)		method		(%)	(%)	(%)	description and remarks
				(%)		(%)				
BH04	7P	1.20	1.65	37.2	BXE	0	49	25	24	Grey mottled brown silty organic CLAY
21101	''	1.20	1.00	07.12	DAL .	Ŭ	10	20		City metalog brown only engante obtain
BH04	12P	3.60	4.25	65.7	BXE	0	51	25	26	Grey slightly sandy silty organic CLAY
BH05	2D	0.20	0.20	27.6	BXE	2	60	24	36	Brown slightly sandy silty CLAY with rare
										rootlets
BH05	13UT	3.20	3.35	12.8	BXE	4	35	25	10	Reddish brown slightly gravelly slightly sandy
										clayey SILT
BH07	2D	0.30	0.30	34.7	BXE	0	69	28	41	Greyish brown silty CLAY with rare rootlets
BH07	15P	6.00	6.10	83.8	BXE	0	65	33	32	Greyish brown slightly sandy silty organic CLAY
										OE/(I
general rema										

natural water content determined in accordance with BS EN ISO 17892 - 1 : 2014 (unless specified)

NP denotes non plastic

denotes sample tested is smaller than that which is recommended in accordance with BS1377 or BS EN ISO 17892


specimen preparation		test method	CONTRACT	CHECKED
A - as received	D - oven dried (60oC)	X - cone penetrometer (test 4.3)		
B - washed on 0.425mm sieve	E - oven dried (105oC)	Y - cone penetrometer (test 4.4)	35338	TB
C - air dried	F - not known	Z - casagrande apparatus (test 4.5)		

Geotechnical Engineering Limited ATTERBERG LINE PLOT

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

	BH/TP No.	depth (m)	LL	PL	PI	remarks
	BH04	1.65	49	25	24	
♦	BH04	4.25	51	25	26	
Δ	BH05	0.20	60	24	36	
×	BH05	3.35	35	25	10	
+	BH07	0.30	69	28	41	
0	BH07	6.10	65	33	32	

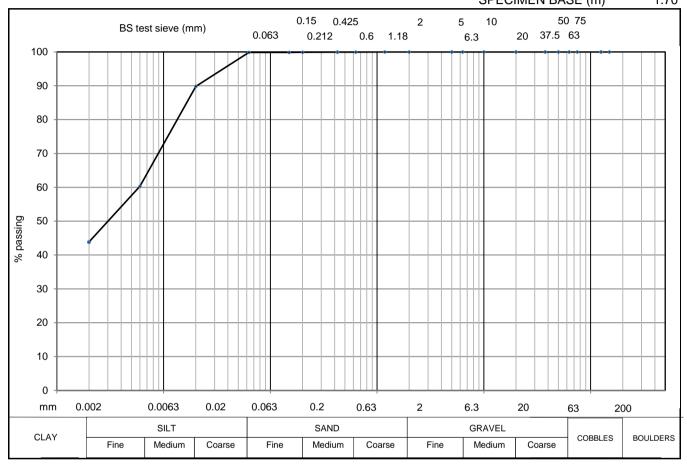
CONTRACT	CHECKED
35338	ТВ

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5

1.60

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH04


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 7P

SAMPLE DEPTH (m) 1.20

DESCRIPTION Grey mottled brown silty organic CLAY

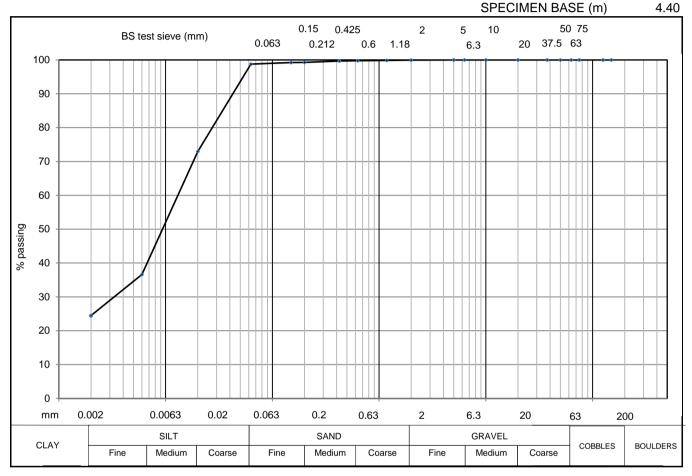
SPECIMEN TOP (m)

SPECIMEN BASE (m) 1.70

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	44						
SILT	56	150		5		20	90
SILT & CLAY	100						
SAND	0	75		2		6	60
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	44
test method(s)	5.2 & 5.4	50		0.63	100		
test method							
		37.5		0.425	100		
5.2 - sieving							
		20		0.2	100		
5.3 - sedimentation by hy	drometer						
		10		0.15	100		
5.4 - sedimentation by pipette							
		6.3		0.063	100		
remarks					C	ONTRACT	CHECKED

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5


CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH04

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 12P

SAMPLE DEPTH (m) 3.60

DESCRIPTION Grey slightly sandy silty organic CLAY

SPECIMEN TOP (m) 4.30

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	25						
SILT	74	150		5	100	20	73
SILT & CLAY	99						
SAND	1	75		2	100	6	37
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	24
test method(s)	5.2 & 5.4	50		0.63	100		
test method		1					
		37.5		0.425	100		
5.2 - sieving							
		20		0.2	99		
5.3 - sedimentation by hyd	drometer						
		10		0.15	99		
5.4 - sedimentation by pipette							
		6.3		0.063	99		
remarks					С	ONTRACT	CHECKE

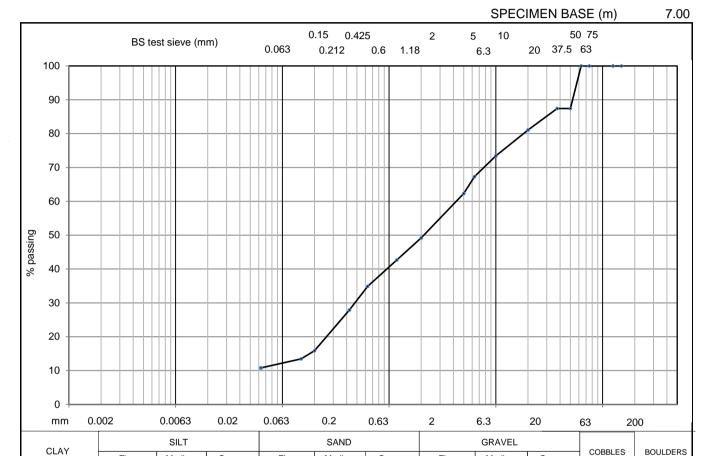
PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH04

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 17D

SAMPLE DEPTH (m) 6.90


DESCRIPTION Brown clayey very sandy GRAVEL

Medium

Coarse

Fine

SPECIMEN TOP (m) 6.90

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY							
SILT		150		5	62	20	
SILT & CLAY	11						
SAND	38	75		2	49	6	
GRAVEL	51						
COBBLE & BOULDER	0	63	100	1.18	43	2	
test method(s)	5.2#	50	87	0.63	35		
test method		1					
		37.5	87	0.425	28		
5.2 - sieving							
		20	81	0.2	16		
5.3 - sedimentation by hy	drometer						
		10	73	0.15	13		
5.4 - sedimentation by pipette							
		6.3	67	0.063	11		
remarks					(CONTRACT	CHECKED

Medium

Coarse

Fine

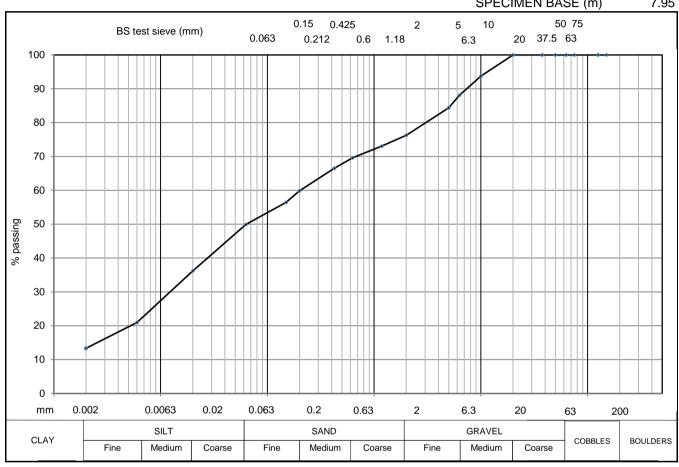
Medium

Coarse

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4: 2016: 5

7.50


CLIENT BH/TP No. **BH04** CARDIFF PARKWAY DEVELOPMENTS LIMITED SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 19D 7.50 SAMPLE DEPTH (m) **DESCRIPTION**

Reddish brown mottled brown slightly gravelly slightly sandy

clayey SILT

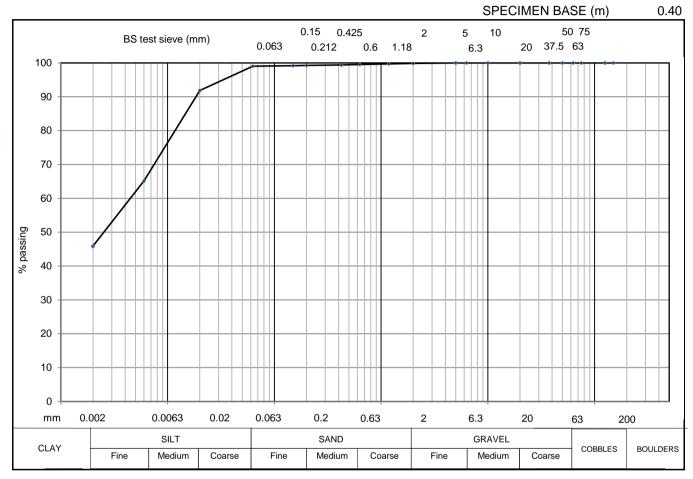
SPECIMEN BASE (m) 7.95

SPECIMEN TOP (m)

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	13						
SILT	37	150		5	84	20	36
SILT & CLAY	50						
SAND	26	75		2	76	6	21
GRAVEL	24						
COBBLE & BOULDER	0	63		1.18	73	2	13
test method(s)	5.2 & 5.4	50		0.63	70		
test method							
		37.5		0.425	67		
5.2 - sieving							
		20	100	0.2	60		
5.3 - sedimentation by hy	drometer						
		10	94	0.15	56		
5.4 - sedimentation by pipette							
		6.3	88	0.063	50		
remarks		-		•	С	ONTRACT	CHECKED

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5


CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH05

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 2D

SAMPLE DEPTH (m) 0.20

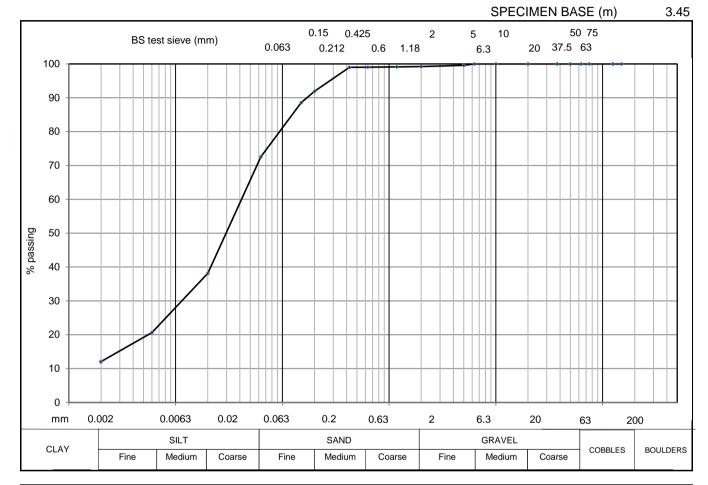
DESCRIPTION Brown slightly sandy silty CLAY with rare rootlets

SPECIMEN TOP (m) 0.20

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	46						
SILT	53	150		5	100	20	92
SILT & CLAY	99						
SAND	1	75		2	100	6	65
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	46
test method(s)	5.2 & 5.4	50		0.63	100		
test method		1					
		37.5		0.425	99		
5.2 - sieving							
		20		0.2	99		
5.3 - sedimentation by hyd	drometer						
		10		0.15	99		
5.4 - sedimentation by pip	5.4 - sedimentation by pipette						
		6.3		0.063	99		
remarks			C	ONTRACT	CHECKED		

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH05

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 13UT

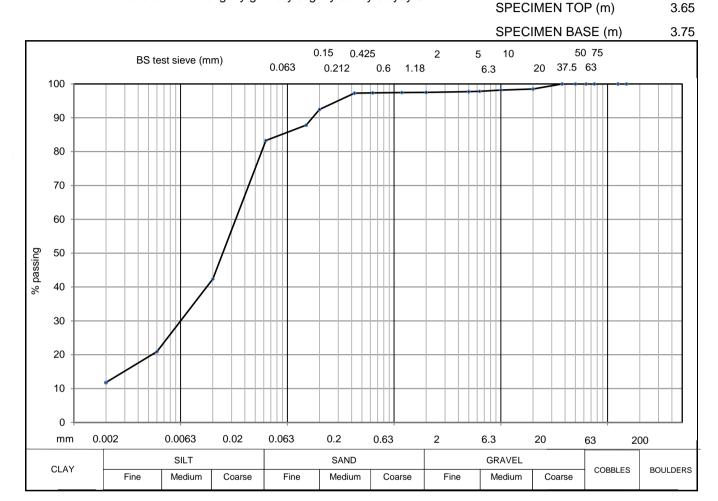
DESCRIPTION Reddish brown slightly gravelly slightly sandy clayey SILT

SPECIMEN TOP (m) 3.35

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	12						
SILT	61	150		5	100	20	38
SILT & CLAY	73						
SAND	27	75		2	99	6	21
GRAVEL	1						
COBBLE & BOULDER	0	63		1.18	99	2	12
test method(s)	5.2 & 5.4	50		0.63	99		
test method							
		37.5		0.425	99		
5.2 - sieving							
		20		0.2	92		
5.3 - sedimentation by hy	drometer						
				0.15	89		
5.4 - sedimentation by pipette							
		6.3	100	0.063	73		
romarks						ONTRACT	CHECKED

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH05

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 14D

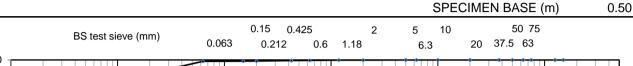
DESCRIPTION Reddish brown slightly gravelly slightly sandy clayey SILT

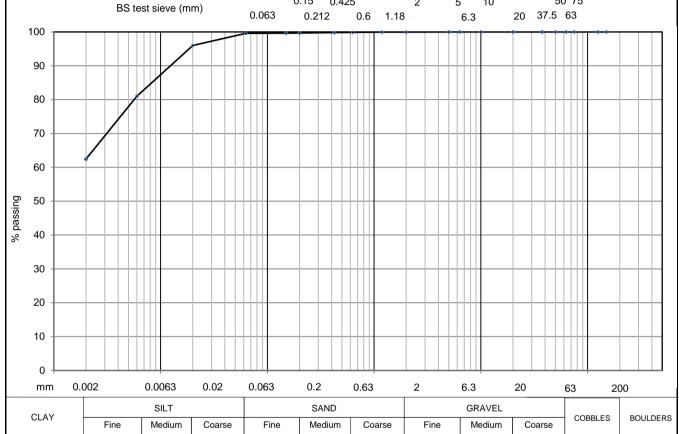
SPECIMEN TOP (m) 3.65

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	12						
SILT	72	150		5	98	20	42
SILT & CLAY	83						
SAND	14	75		2	98	6	21
GRAVEL	2						
COBBLE & BOULDER	0	63		1.18	97	2	12
test method(s)	5.2 & 5.4	50		0.63	97		
test method		1					
		37.5	100	0.425	97		
5.2 - sieving							
		20	99	0.2	92		
5.3 - sedimentation by hy	drometer						
		10	98	0.15	88		
5.4 - sedimentation by pipette							
		6.3	98	0.063	83		
remarks						CONTRACT	CHECKED

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4: 2016: 5


CLIENT BH/TP No. **BH07** CARDIFF PARKWAY DEVELOPMENTS LIMITED


2D SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE

> 0.30 SAMPLE DEPTH (m)

DESCRIPTION Greyish brown silty CLAY with rare rootlets

SPECIMEN TOP (m) 0.30

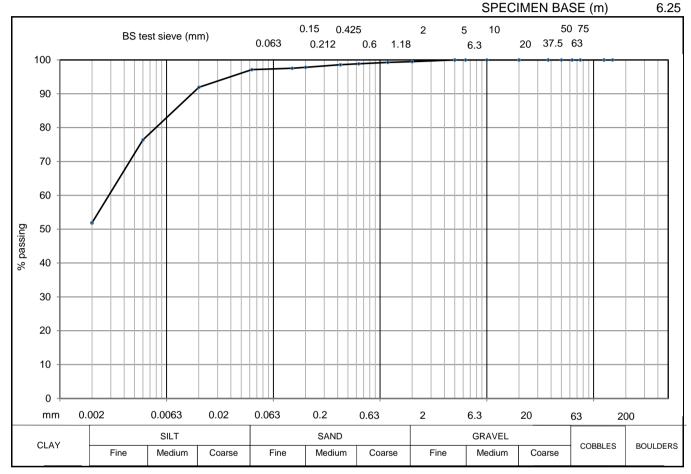
soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	62						
SILT	37	150		5	100	20	96
SILT & CLAY	100						
SAND	0	75		2	100	6	81
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	62
test method(s)	5.2 & 5.4	50		0.63	100		
test method							
		37.5		0.425	100		
5.2 - sieving							
		20		0.2	100		
5.3 - sedimentation by hyd	drometer	10					
				0.15	100		
5.4 - sedimentation by pipette							
		6.3		0.063	100		
							OUEOKED

CONTRACT **CHECKED** # denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892 Particle density assigned an assumed value of 2.70 Mg/m3 35338 TB

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH07


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 15P

SAMPLE DEPTH (m) 6.00

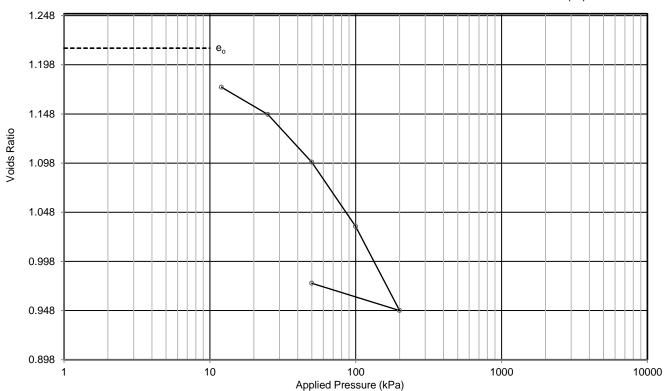
DESCRIPTION Greyish brown slightly sandy silty organic CLAY

SPECIMEN TOP (m)

SPECIMEN TOP (m) 6.15

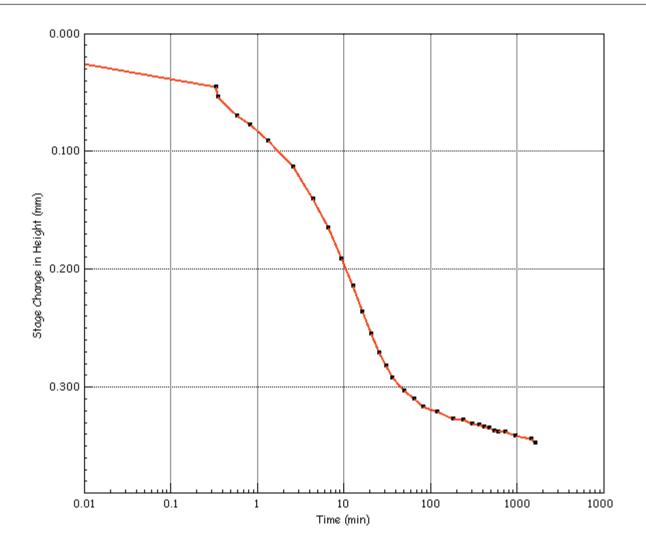
soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	52						
SILT	45	150		5	100	20	92
SILT & CLAY	97						
SAND	2	75		2	100	6	76
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	99	2	52
test method(s)	5.2 & 5.4	50		0.63	99		
test method							
		37.5		0.425	99		
5.2 - sieving							
		20		0.2	98		
5.3 - sedimentation by hy	drometer						
		10		0.15	98		
5.4 - sedimentation by pip	ette						
		6.3		0.063	97		
remarks						ONTRACT	CHECKED

DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

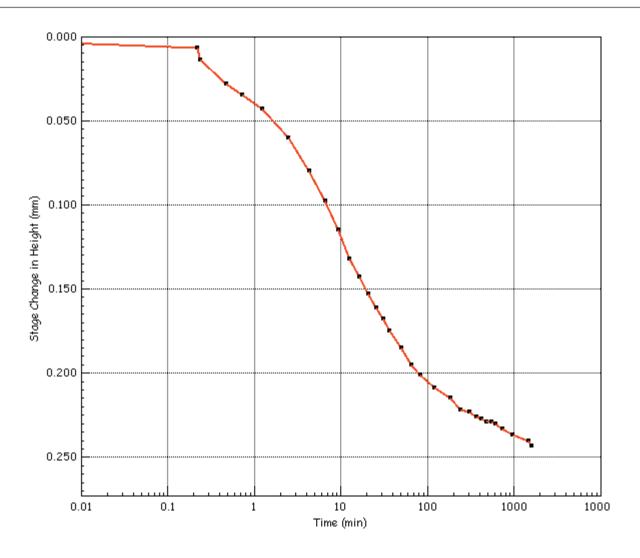


CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH04

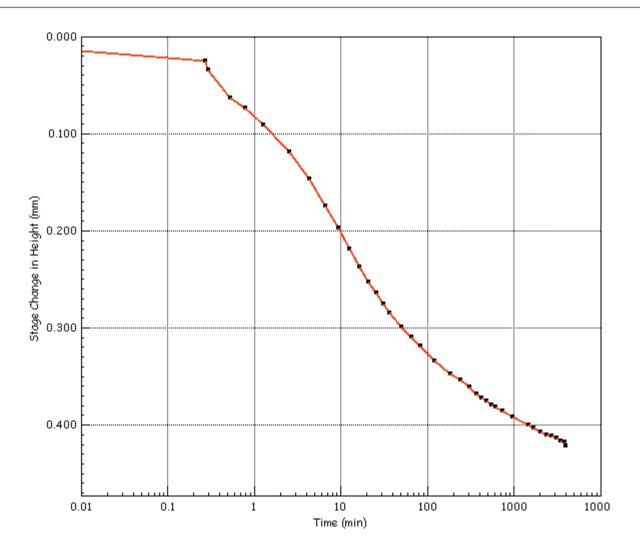
SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 7P


DESCRIPTION Grey mottled brown slightly sandy silty organic CLAY SAMPLE DEPTH (m) 1.20

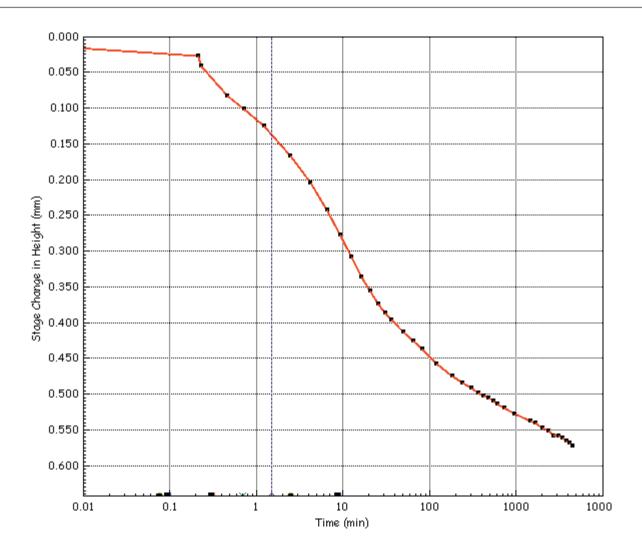
SPECIMEN DEPTH (m) 1.90


test and sample details	_	_	test results			•	•
			pressure	voids	laboratory c	oefficient	s of
specimen diameter	mm	63.40	stage	ratio	compressibility	consoli	dation
specimen height	mm	18.92	(kPa)		mv	Cv	Csec
initial moisture content	%	45.0	(KFa)		(m2/MN)	(m2	:/yr)
final moisture content	%	37.2					
initial bulk density	Mg/m3	1.77	12	1.175	1.5	0.78	
initial dry density	Mg/m3	1.22	25	1.147	0.99	0.89	
initial voids ratio		1.215	50	1.099	0.9	0.85	
initial degree of saturation	%	100	100	1.033	0.62	0.96	0.0058
particle density	Mg/m3	#2.70	200	0.948	0.42	1	
swelling pressure	kPa	N/A	50	0.976	0.095		
P'o to P'o +100 kPa		-					
laboratory temperature	оС	20 ± 2					
method of time fitting		root time					
remarks # denotes particle de	nsity has been ass	igned an assume	d value		CONTRACT	CHEC	CKED
load frame correction	s applied				35338	T	

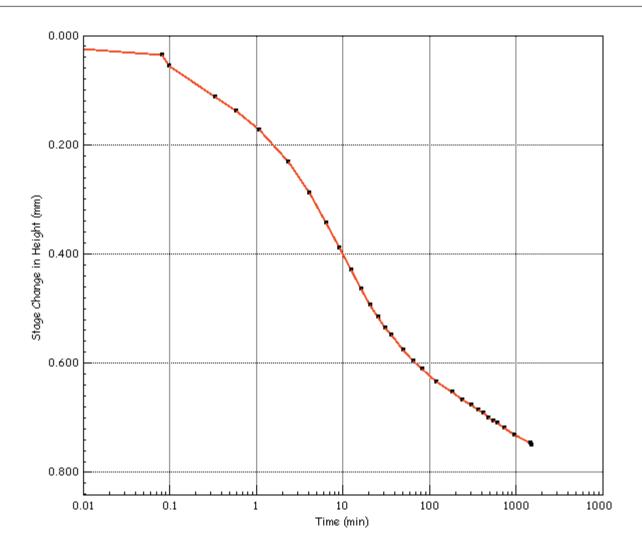
Vertical Stress	- I -	(kPa)	12.0
	σ'i		
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.008
Height Settlement	ΔLs	(mm)	0.339
Voids Ratio	ef		-0.148


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 5	
- m	- CSt Wictiou			Database: .\SQLEXPRESS \ GEL		
2000 7 D	Site Reference			Test Date	24/07/2019	
SHOW IN	Jobfile	35338		Sample	7P	
	Client	CARDFF PARKW	/AY	Borehole	BH04	
	Operator	TA/JT/JG	Checked *		Approved	*

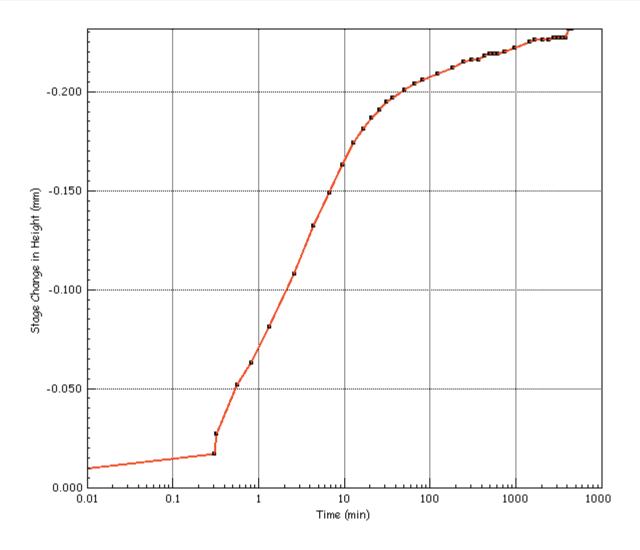
Vertical Stress	σ'i	(kPa)	25
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.014
Height Settlement	ΔLs	(mm)	0.577
Voids Ratio	e f		-0.158


	Test Method	BS1377 - 5 : 1990	: Clause 3	Test Name Database: .\SQLE	FRAME 5	
800000	Site Reference			Test Date	24/07/2019	
SHOW IN	Jobfile	35338		Sample	7P	
	Client	CARDFF PARKW	'AY	Borehole	BH04	
	Operator T	A/JT/JG	Checked *		Approved	*

Vertical Stress	σ';	(kPa)	50
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.021
Height Settlement	ΔLs	(mm)	0.991
Voids Ratio	e f		-0.176


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 5	
l m		B01077 - 3 : 1000	. Olause o	Database: .\SQLEXPRESS \ GEL		
1 00 7 7 D	Site Reference			Test Date	24/07/2019	
- SHERING	Jobfile	35338		Sample	7P	
	Client	CARDFF PARKW	/AY	Borehole	BH04	
	Operator	TA/JT/JG	Checked *		Approved	*

	Vertical Stress	σ'i	(kPa)	100
	Initial Temperature	Τi	(oC)	20.0
	Frame Correction	L corr	(mm)	0.034
	Height Settlement	ΔLs	(mm)	1.550
	Voids Ratio	e f		-0.200
-				


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 5	
		DS 1377 - 3 . 1990			EXPRESS \ GEL	
8000 7 D	Site Reference			Test Date	24/07/2019	
SHE SHE	Jobfile	35338		Sample	7P	
	Client	CARDFF PARKW	/AY	Borehole	BH04	
	Operator	TA/JT/JG	Checked *		Approved *	

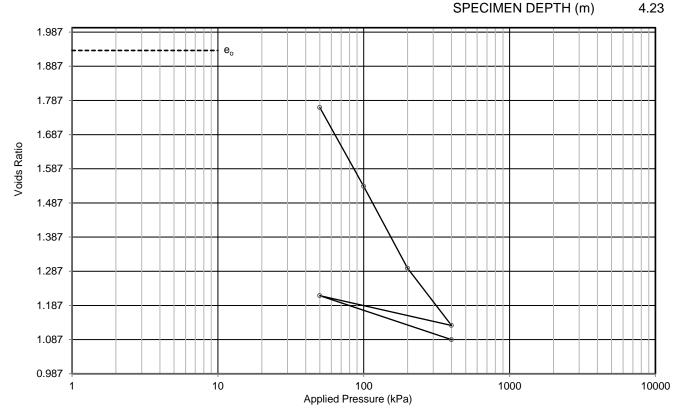
Vertical Stress	σ'i	(kPa)	200
Initial Temperature	Τi	(oC)	20.0
Frame Correction	Lcorr	(mm)	0.050
Height Settlement	ΔLs	(mm)	2.280
Voids Ratio	e f		-0.232

	Test Method	BS1377 - 5 : 1990	: Clause 3	Test Name Database: .\SQLE	FRAME 5	
800000	Site Reference			Test Date	24/07/2019	
SHOW IN	Jobfile	35338		Sample	7P	
	Client	CARDFF PARKW	'AY	Borehole	BH04	
	Operator T	A/JT/JG	Checked *		Approved	*

Vertical Stress σ'_i (kPa) 50	
Initial Temperature T i (oC) 20.0	
Frame Correction L CORR (mm) 0.056	
Height Settlement	
Voids Ratio e f -0.221	1

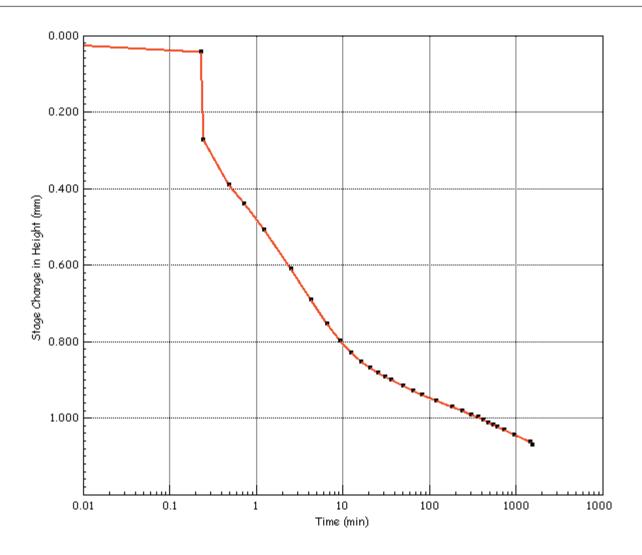
		Test Method	BS1377 - 5 : 1990	· Clause 3		Test Name	FRAME 5		
	~~~		501 M 51 1000 . Glades 9				Database: .\SQLEXPRESS \ GEL		
	2 7 P	Site Reference				Test Date	24/07/2019		
	SHED IN	Jobfile	35338			Sample	7P		
		Client	CARDFF PARKW	'AY		Borehole	BH04		
		Operator	TA/JT/JG	Checked	*		Approved	*	

#### **DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES**



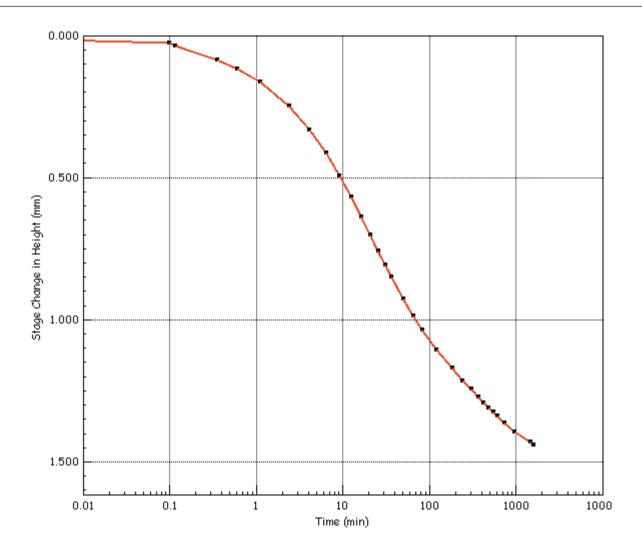



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH04


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 12P

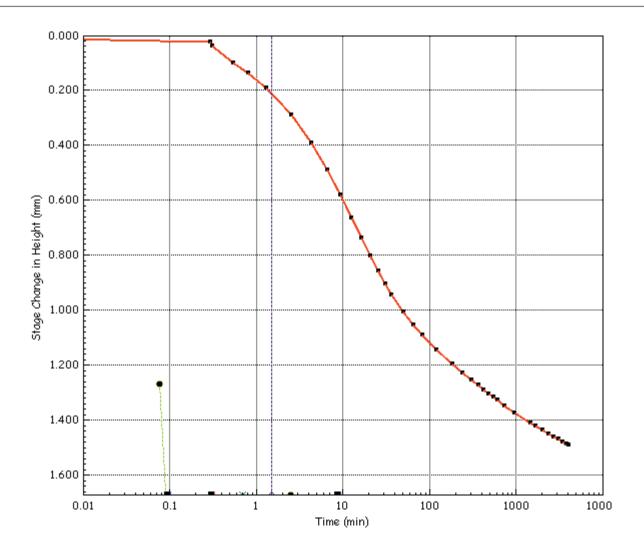
DESCRIPTION Grey slightly sandy silty organic CLAY SAMPLE DEPTH (m) 3.60




test and sample details		test results					
			pressure	voids	laboratory c	oefficien	ts of
specimen diameter	mm 63.55		stage	ratio	compressibility	consol	idation
specimen height	mm	17.79	(IrDa)		mv	Cv	Csec
initial moisture content	%	71.8	(kPa)		(m2/MN)	(m2	2/yr)
final moisture content	%	43.6					
initial bulk density	Mg/m3	1.58	50	1.766	1.1	2.9	
initial dry density	Mg/m3	0.92	100	1.535	1.7	0.49	
initial voids ratio		1.933	200	1.296	0.94	0.5	0.013
initial degree of saturation	%	100	400	1.128	0.36	0.58	
particle density	Mg/m3	#2.70	50	1.216	0.12		
swelling pressure	kPa	N/A	400	1.087	0.17	1.7	
P'o to P'o +100 kPa		-					
laboratory temperature	оС	$20 \pm 2$					
method of time fitting		root time					
remarks # denotes particle de	nsity has been ass	igned an assume	d value		CONTRACT	CHE	CKED
load frame correction	35338	Т	В				

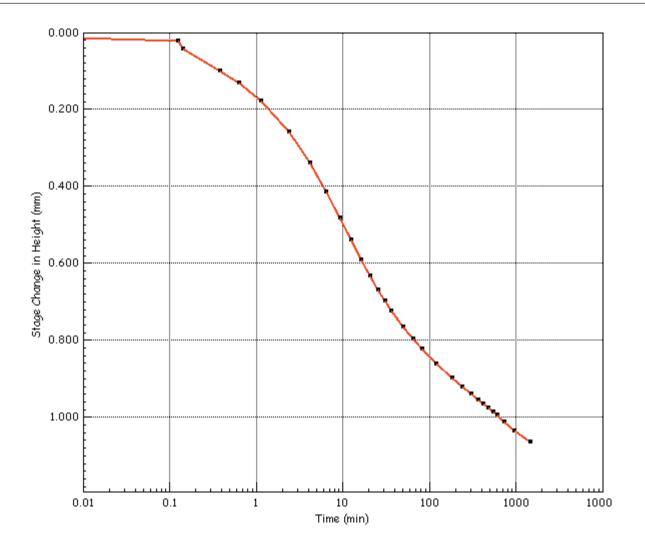
Vertical Stress	σ'i	(kPa)	50
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.056
Height Settlement	ΔLs	(mm)	1.013
Voids Ratio	ef		-0.177




	Test Method	BS1377 - 5 : 1990	: Clause 3	Test Name Database: .\SQLE	FRAME 4	
of the same	Site Reference			Test Date	24/07/2019	
SHA 34	Jobfile	35338		Sample	12P	
	Client	CARDFF PARKW	/AY	Borehole	BH04	
	Operator	TA/JT/JG	Checked *		Approved	*

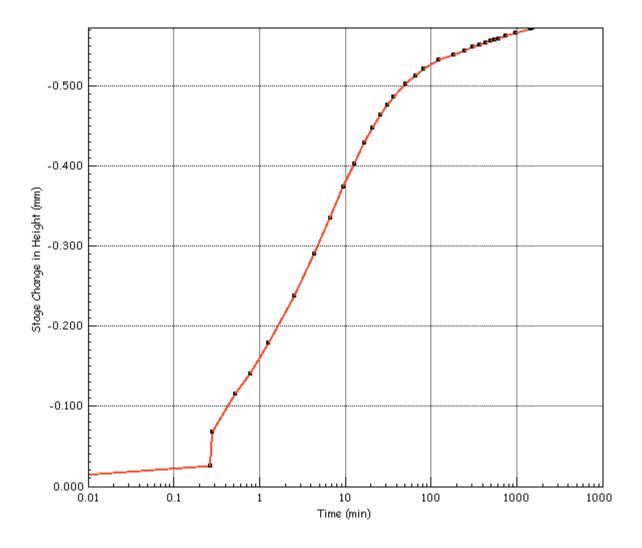
Vertical Stress	σ'i	(kPa)	100
Initial Temperature	Τi	(oC)	20.0
Frame Correction	Lcorr	(mm)	0.083
Height Settlement	ΔLs	(mm)	2.413
Voids Ratio	e f		-0.237




	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 4	
l m	BOTOTY 0.1000.Gladde0		. Olause o	Database: .\SQLEXPRESS \ GEL		
800 7 D	Site Reference			Test Date	24/07/2019	
- SHERING	Jobfile	35338		Sample	12P	
	Client	CARDFF PARKW	/AY	Borehole	BH04	
	Operator	TA/JT/JG	Checked *		Approved	*

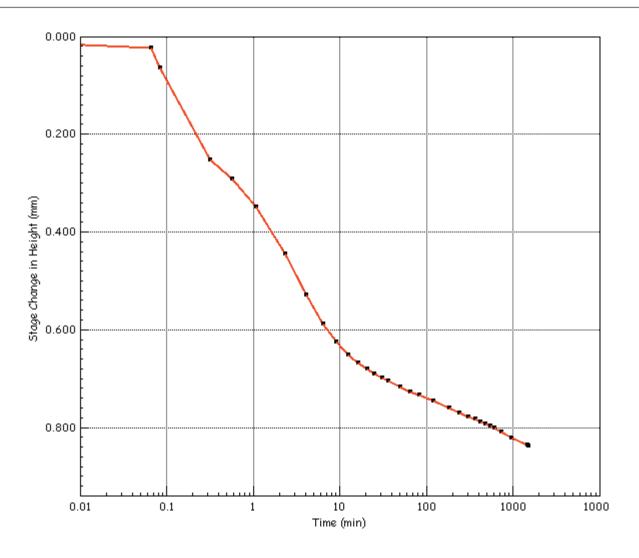
Vertical Stress	σ'i	(kPa)	200
Initial Temperature	Τį	(oC)	20.0
Frame Correction	Lcorr	(mm)	0.118
Height Settlement	ΔLs	(mm)	3.866
Voids Ratio	e f		-0.300




		Test Method	BS1377 - 5 : 1990	· Clause 3		Test Name	FRAME 4		
	-~~						Database: .\SQLEXPRESS \ GEL		
	1 7 Pa	Site Reference				Test Date	24/07/2019		
	SHAD IN	Jobfile	35338			Sample	12P		
		Client	CARDFF PARKW	/AY		Borehole	BH04		
		Operator	TA/JT/JG	Checked '			Approved	*	

,	Vertical Stress		σ'i	(kPa)	400
	nitial Temperature		Τį	(oC)	20.0
	Frame Correction		L corr	(mm)	0.156
	Height Settlement		ΔLs	(mm)	4.882
'	Voids Ratio		ef		-0.344




	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 4	
l m	BOTOTY 0.1000.Gladde0		. Olause o	Database: .\SQLEXPRESS \ GEL		
800 7 D	Site Reference			Test Date	24/07/2019	
- SHERING	Jobfile	35338		Sample	12P	
	Client	CARDFF PARKW	/AY	Borehole	BH04	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ'i	(kPa)	50	
Initial Temperature	Τi	(oC)	20.0	
Frame Correction	L corr	(mm)	0.108	
Height Settlement	ΔLs	(mm)	4.352	
Voids Ratio	e f		-0.321	



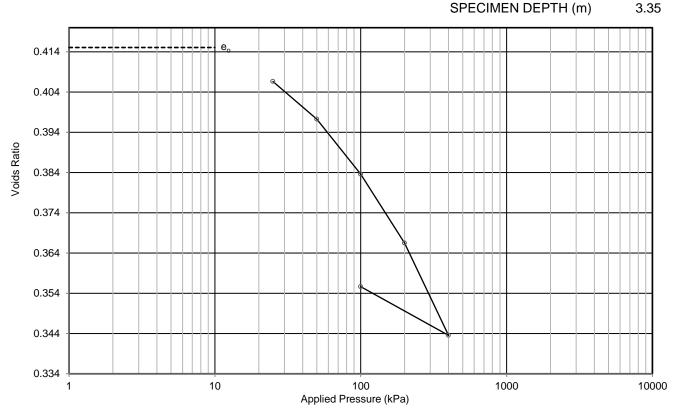
	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 4	
-~~		BO 1077 - 0 : 1000	. Olause 5	Database: .\SQLEXPRESS \ GEL		
1 7 Pa	Site Reference			Test Date	24/07/2019	
SHAD IN	Jobfile	35338		Sample	12P	
	Client	CARDFF PARKW	/AY	Borehole	BH04	
	Operator	TA/JT/JG	Checked '		Approved	*

Vertical Stress	σ'i	(kPa)	400
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.156
Height Settlement	ΔLs	(mm)	5.134
Voids Ratio	ef		-0.355



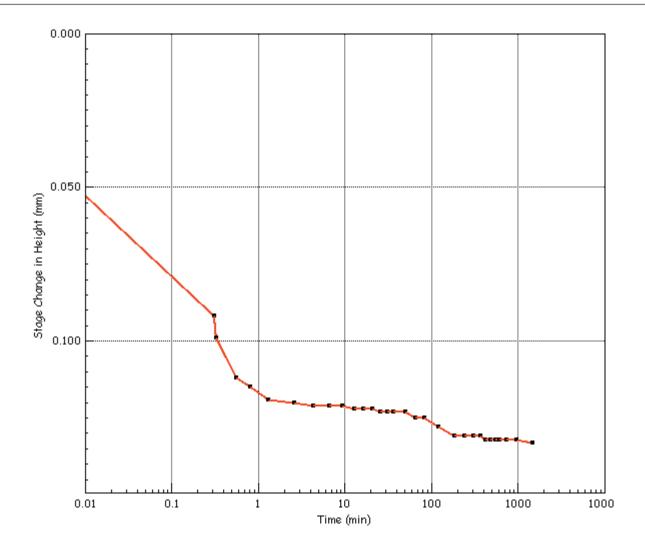
	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 4	
- m	- CSt WCtrlod	DO 1077 - 0 : 1000	. Olause o	Database: .\SQLEXPRESS \ GEL		
2000 7 D	Site Reference			Test Date	24/07/2019	
SHOW IN	Jobfile	35338		Sample	12P	
	Client	CARDFF PARKW	/AY	Borehole	BH04	
	Operator	TA/JT/JG	Checked *		Approved	*

#### **DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES**



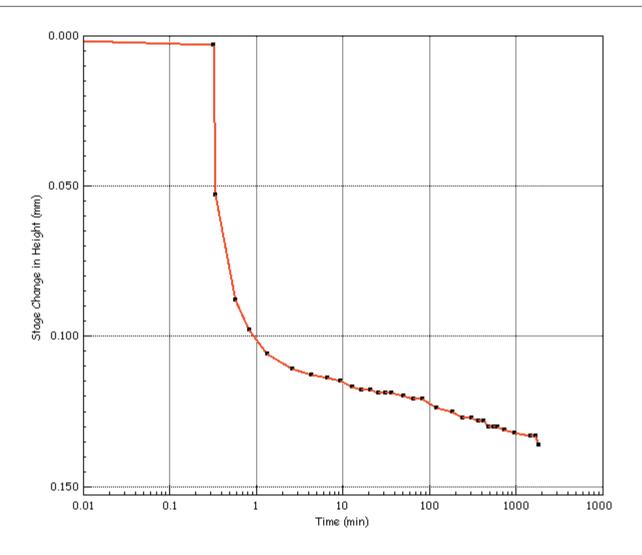



CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH05


SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 13UT

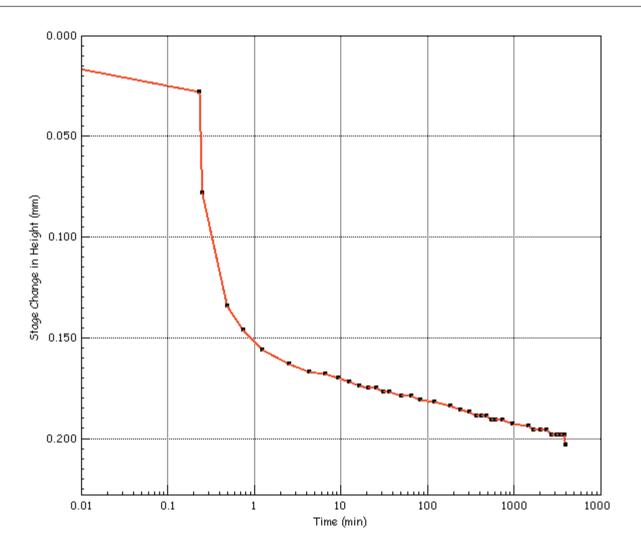
DESCRIPTION Reddish brown mottled grey slightly sandy clayey SILT SAMPLE DEPTH (m) 3.20



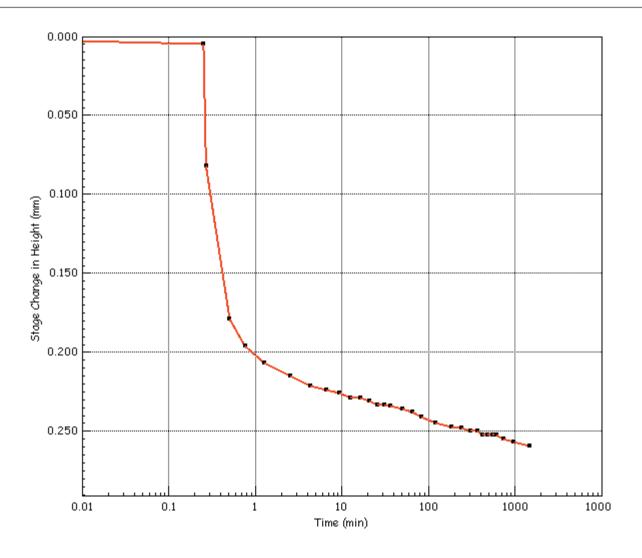

test and sample details			test results			
			pressure	voids	laboratory c	oefficients of
specimen diameter	mm	63.34	stage	ratio	compressibility	consolidatio
specimen height	mm	18.93	(kPa)		mv	Cv
initial moisture content	%	15.1	(KFa)		(m2/MN)	(m2/yr)
final moisture content	%	15.9				
initial bulk density	Mg/m3	2.20	25	0.407	0.24	16
nitial dry density	Mg/m3	1.91	50	0.397	0.27	7
initial voids ratio		0.415	100	0.384	0.2	4.7
nitial degree of saturation	%	98	200	0.366	0.12	3.2
particle density	Mg/m3	#2.70	400	0.344	0.084	7.5
swelling pressure	kPa	N/A	100	0.356	0.03	
P'o to P'o +100 kPa		-				
aboratory temperature	оС	$20 \pm 2$				
method of time fitting		root time				
remarks # denotes particle de	nsity has been ass	igned an assume	d value		CONTRACT	CHECKE
load frame correction	s applied				35338	ТВ

Vertical Stress	σ'i	(kPa)	25
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.020
Height Settlement	ΔLs	(mm)	0.113
Voids Ratio	e f		-0.138

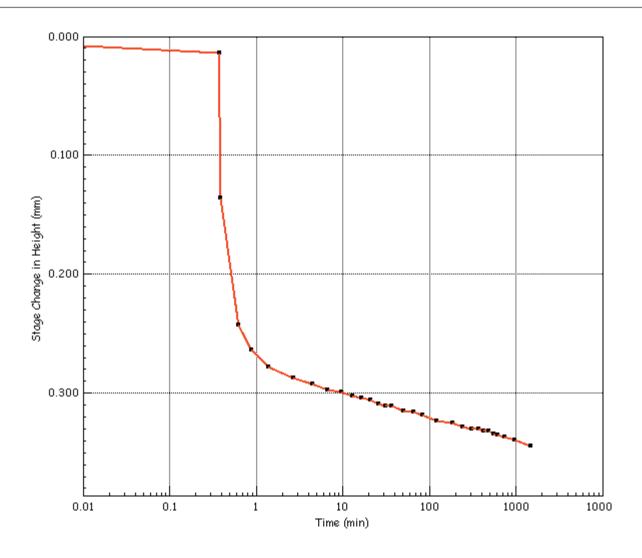



	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 6	
~~~		BO 1077 - 0 . 1000	. Oladoc o	Database: .\SQLEXPRESS \ GEL		
2000 7 D	Site Reference			Test Date	24/07/2019	
SHOW IN	Jobfile	35338		Sample	13UT	
	Client	CARDFF PARKW	/AY	Borehole	BH05	
	Operator	TA/JT/JG	Checked *		Approved	*

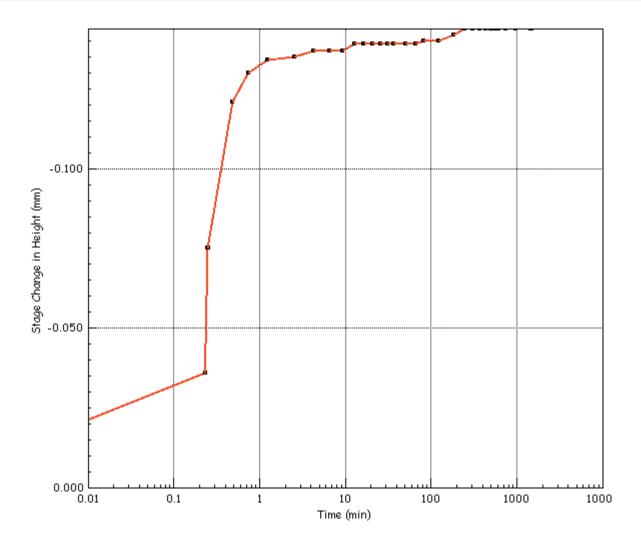
Vertical Stress	σ'i	(kPa)	50
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.031
Height Settlement	ΔLs	(mm)	0.238
Voids Ratio	e f		-0.143


	Test Method	BS1377 - 5 : 1990	: Clause 3	Test Name Database: .\SQLE	FRAME 6	
RECOUNTY DE	Site Reference			Test Date	24/07/2019	
A SHOW	Jobfile	35338		Sample	13UT	
	Client	CARDFF PARKW	/AY	Borehole	BH05	
	Operator T	A/JT/JG	Checked *		Approved	*

Vertical Stress	σ';	(kPa)	100
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.051
Height Settlement	ΔLs	(mm)	0.421
Voids Ratio	e f		-0.151


	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 6	
		B01077 0 : 1000	. Olduse o	Database: .\SQLEXPRESS \ GEL		
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Site Reference			Test Date	24/07/2019	
SHAD IN	Jobfile	35338		Sample	13UT	
	Client	CARDFF PARKW	'AY	Borehole	BH05	
	Operator	TA/JT/JG	Checked *		Approved	*

Vertical Stress	σ'i	(I+D-)	
	- 1	(kPa)	200
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.081
Height Settlement	ΔLs	(mm)	0.650
Voids Ratio	ef		-0.161


F		Test Method	BS1377 - 5 : 1990	· Clause 3		Test Name	FRAME 6	
	~~~		DO 1077 - 0 : 1000	. Oladoc o		Database: .\SQLEXPRESS \ GEL		
	2 7 P	Site Reference				Test Date	24/07/2019	
	SHED IN	Jobfile	35338			Sample	13UT	
		Client	CARDFF PARKW	/AY		Borehole	BH05	
		Operator	TA/JT/JG	Checked	*		Approved	*

Vertical Stress	σ'i	(kPa)	400
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.114
Height Settlement	ΔLs	(mm)	0.957
Voids Ratio	e f		-0.174



	Test Method BS1377 - 5 : 1990 :		· Clause 3	Test Name	FRAME 6		
		B31377 - 3 . 1990	. Clause 3	Database: .\SQL	Database: .\SQLEXPRESS \ GEL		
0000 7 D	Site Reference			Test Date	24/07/2019		
SHAD IN	Jobfile	35338		Sample	13UT		
	Client	CARDFF PARKW	/AY	Borehole	BH05		
	Operator	TA/JT/JG	Checked *		Approved	*	

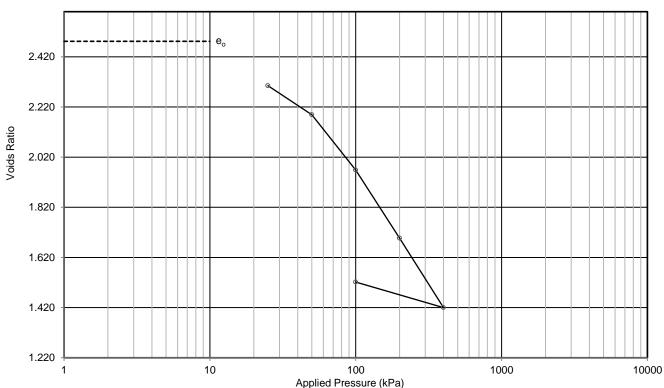
Vertical Stress $\sigma'_i$ (kPa) 100
Initial Temperature T i (oC) 20.0
Frame Correction L CORR (mm) 0.125
Height Settlement
Voids Ratio e f0.167



	Test Method	Test Method BS1377 - 5 : 1990 : Clause 3		Test Name	FRAME 6	
		B31377 - 3 . 1990	. Clause 3	Database: .\SQLE	EXPRESS \ GEL	
0000 7 ) D	Site Reference			Test Date	24/07/2019	
SHA SU	Jobfile	35338		Sample	13UT	
	Client	CARDFF PARKW	/AY	Borehole	BH05	
	Operator	TA/JT/JG	Checked *		Approved	*

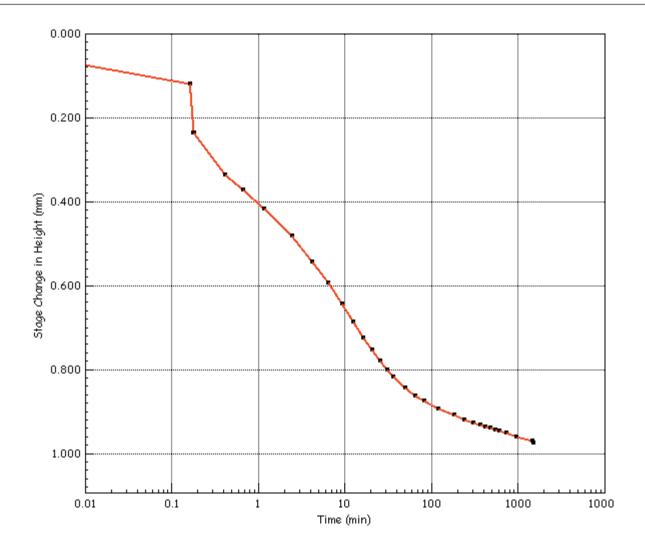
#### **DETERMINATION OF ONE-DIMENSIONAL CONSOLIDATION PROPERTIES**





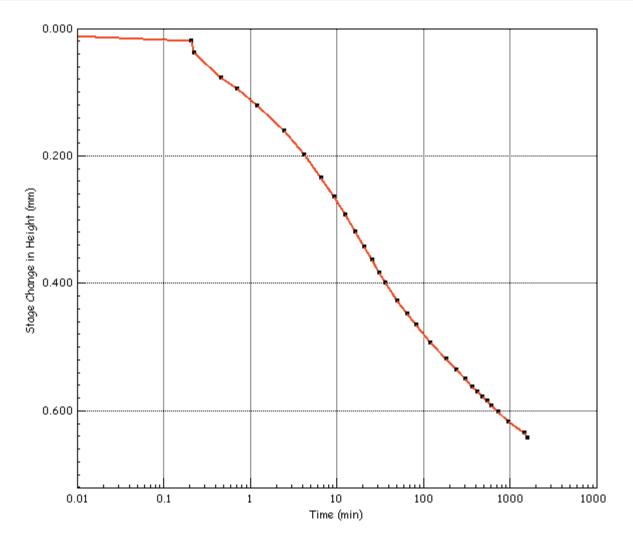

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED BH/TP No. BH07

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION SAMPLE No./TYPE 15P


DESCRIPTION Greyish brown slightly sandy silty organic CLAY SAMPLE DEPTH (m) 6.00

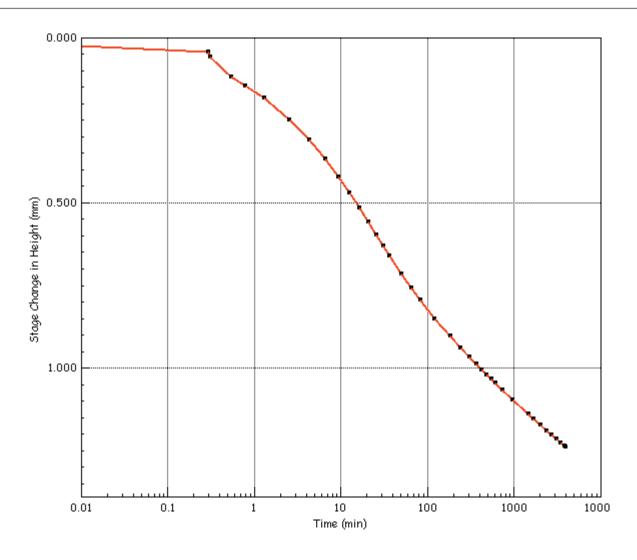
SPECIMEN DEPTH (m) 6.10




est and sample details			test results				
			pressure	voids	laboratory c	oefficien	ts of
specimen diameter	mm	63.44	stage	ratio	compressibility	conso	lidatior
pecimen height	mm	18.93	(kPa)		mv	Cv	Cse
nitial moisture content	%	87.9	(KFa)		(m2/MN)	(m:	2/yr)
nal moisture content	%	57.2					
nitial bulk density	Mg/m3	1.46	25	2.305	2	1.2	
nitial dry density	Mg/m3	0.78	50	2.189	1.4	0.89	
nitial voids ratio		2.482	100	1.968	1.4	0.67	
nitial degree of saturation	%	96	200	1.697	0.92	0.3	
particle density	Mg/m3	#2.70	400	1.420	0.51	0.25	0.01
swelling pressure	kPa	N/A	100	1.522	0.14		
P'o to P'o +100 kPa		-					
aboratory temperature	οС	20 ± 2					
method of time fitting		root time					
emarks # denotes particle de	nsity has been ass	igned an assume	d value		CONTRACT	CHE	CKE
load frame correction	s applied				35338	_	В

Vertical Stress	σ';	(kPa)	25	
Initial Temperature	Τį	(oC)	20.0	
Frame Correction	L corr	(mm)	0.012	
Height Settlement	ΔLs	(mm)	0.962	
Voids Ratio	e f		-0.175	

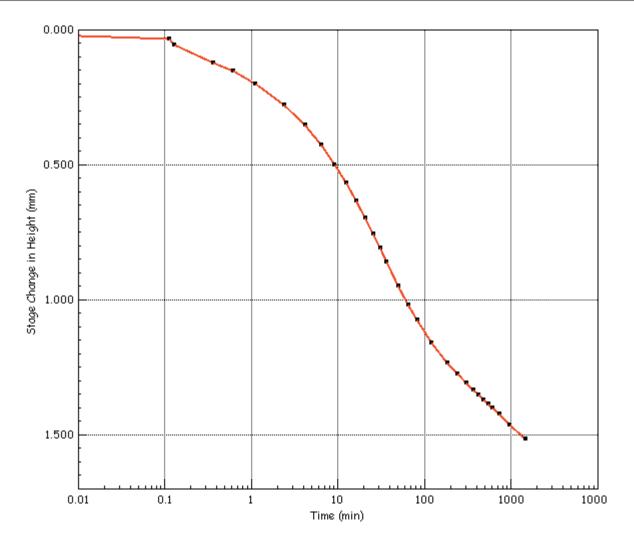



Test Method		BS1377 - 5 · 1000	BS1377 - 5 : 1990 : Clause 3		FRAME 3	
		B31377 - 3 . 1990	. Clause 3	Database: .\SC	QLEXPRESS \ GEL	
8000 7 D	Site Reference			Test Date	24/07/2019	
SHE SHE	Jobfile	35338		Sample	15P	
	Client	CARDFF PARKW	/AY	Borehole	BH07	
	Operator	TA/JT/JG	Checked *		Approved *	

Initial Temperature T $_{\rm i}$ (oC) 20.0 Frame Correction L CORR (mm) 0.026 Height Settlement $\Delta$ L $_{\rm S}$ (mm) 1.590				
Frame Correction $L$ CORR $(mm)$ 0.026 Height Settlement $\Delta L$ $_{\rm S}$ $(mm)$ 1.590	Vertical Stress	σ'i	(kPa)	50
Height Settlement	Initial Temperature	Τi	(oC)	20.0
Height Settlement	Frame Correction	L corr	(mm)	0.026
Voids Ratio E f0.202	Height Settlement		(mm)	1.590
	Voids Ratio	e f		-0.202



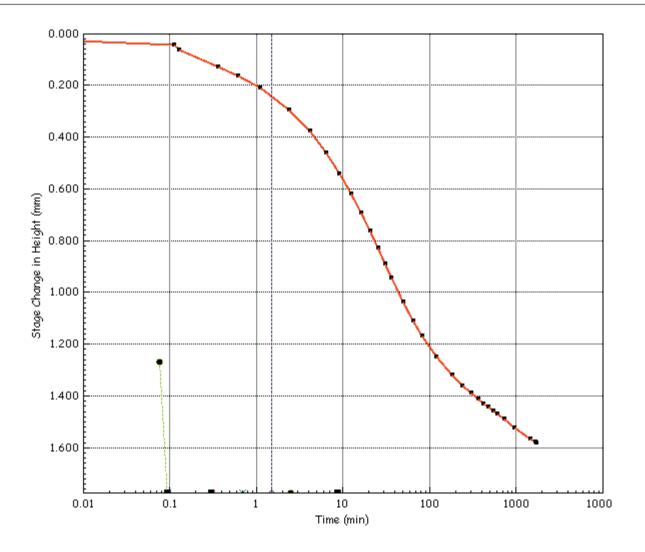
Test Method		Method BS1377 - 5 : 1990 : Clause 3		Test Name	FRAME 3	
		DO 1077 - 0 : 1000	. Olause o	Database: .\SQLI	EXPRESS \ GEL	
800 7 D	Site Reference			Test Date	24/07/2019	
SHA SU	Jobfile	35338		Sample	15P	
	Client	CARDFF PARKW	/AY	Borehole	BH07	
	Operator	TA/JT/JG	Checked *		Approved	*


Vertical Stress	σ';	(kPa)	100
Initial Temperature	Τį	(oC)	20.0
Frame Correction	L corr	(mm)	0.061
Height Settlement	ΔLs	(mm)	2.792
Voids Ratio	e f		-0.254



	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 3		
- m		B01077 - 3 : 1000			Database: .\SQLEXPRESS \ GEL		
2000 7 D	Site Reference			Test Date	24/07/2019		
SHOW IN	Jobfile	35338		Sample	15P		
	Client	CARDFF PARKW	'AY	Borehole	BH07		
	Operator	TA/JT/JG	Checked *		Approved	*	

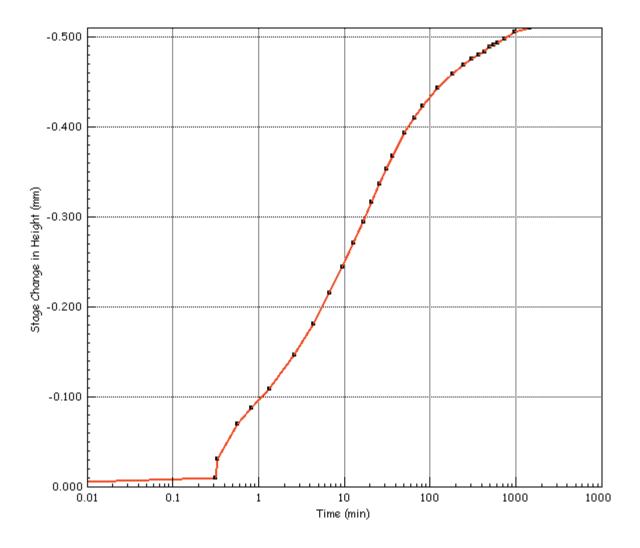
# **Oedometer Consolidation Settlement Report**


Vertical Stress	σ';	(kPa)	200
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.104
Height Settlement	ΔLs	(mm)	4.269
Voids Ratio	e f		-0.318



	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 3	
- m		B01077 - 3 : 1000	. Olduse o	Database: .\SQLE	EXPRESS \ GEL	
2000 7 D	Site Reference			Test Date	24/07/2019	
SHOW IN	Jobfile	35338		Sample	15P	
	Client	CARDFF PARKW	'AY	Borehole	BH07	
	Operator	TA/JT/JG	Checked *		Approved	*

# **Oedometer Consolidation Settlement Report**


Vertical Stress	σ'i	(kPa)	400
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.179
Height Settlement	ΔLs	(mm)	5.774
Voids Ratio	ef		-0.383



	Test Method	BS1377 - 5 : 1990	· Clause 3	Test Name	FRAME 3				
		B31377 - 3 . 1990	. Clause 3	Database: .\SC					
8000 7 D	Site Reference			Test Date	24/07/2019				
SHE SHE	Jobfile	35338		Sample	15P				
	Client	CARDFF PARKW	/AY	Borehole	BH07				
	Operator	TA/JT/JG	Checked *		Approved *				

# **Oedometer Consolidation Settlement Report**

Vertical Stress	σ'i	(kPa)	100
Initial Temperature	Τi	(oC)	20.0
Frame Correction	L corr	(mm)	0.224
Height Settlement	ΔLs	(mm)	5.218
Voids Ratio	e f		-0.359



	Test Method	BS1377 - 5 : 1990	: Clause 3	Test Name FRAME 3 Database: .\SQLEXPRESS \ GEL				
of The	Site Reference			Test Date	24/07/2019			
SHAD TU	Jobfile	35338		Sample	15P			
	Client	CARDFF PARKW	/AY	Borehole	BH07			
	Operator 7	TA/JT/JG	Checked *		Approved	*		

## Geotechnical Engineering Limited

## **UNDRAINED TRIAXIAL COMPRESSION**

BS.1377: PART 7:1990:8

CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION



borehole	san	nple	specimen	code	moisture	content	dime	nsions	der	nsity	cell	rate of	deviator	failure	failure	shear		
/trial pit	no./type	depth	depth		initial	final	length	diameter	bulk	dry	pressure	strain	stress	strain	mode	strength*	description an	d remarks
no.		(m)	(m)				_				(kPa)	(%/min)	(kPa)	(%)		(kPa)		
					(%)	(%)	(mm)	(mm)	(Mg/m3)	(Mg/m3)								
BH04	7P	1.20	1.70	UU100	37.2	43.6	206	104	1.69	1.23	15	2.0	32	11.2	I	16	Grey mottled brown CLAY	silty organic
BH04	12P	3.60	4.00	UU100	65.7	64.9	206	104	1.52	0.92	65	2.0	21	7.3	I	10	Grey slightly sandy CLAY	silty organic
BH05	13UT	3.20	3.40	UU100	12.8	11.9	206	104	2.34	2.08	60	2.0	316	4.9	S	158	Reddish brown mot gravelly slightly san	
BH07	15P	6.00	6.20	UU100	83.8	68.3	206	104	1.48	0.81	125	2.0	46	4.9	В	23	Greyish brown slgih organic CLAY	itly sandy silty
general remarks:	<u> </u>		<u> </u>		code:			failure mode			membrane t	ype/thickness	<u> </u> s:				CONTRACT	CHECKED
* shear strength tak membrane corrections sample taken vertice	on applied			•	UU - unconso M - multi stage S - set of three		ed	B - barrel (plas S - shear (britt I - intermediate	le failure)		latex membra 38 - 0.2mm 70 - 0.4mm	ne used (unles	s otherwise spe	ecified)			35338	ТВ
strain rate 2%/min			•		R - remoulded			O - other (see	remarks)		100 - 0.4mm							

### Geotechnical Engineering Limited

## **UNIAXIAL COMPRESSIVE STRENGTH OF ROCK**





CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED

#### SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole	san	nple	specimen	diameter	height	11/0	moisture	bulk	loading	time to	UCS	
/trial pit	no./type	depth	depth	D	Н	H/D	content	density	rate	failure		description, codes and remarks
no.		(m)	(m)	(mm)	(mm)		(%)	(Mg/m3)	(kN/min)	(min:sec)	(MPa)	
BH05	30Cs	19.70	19.75	88.6	273.6	3.09	3.3	2.61	5	04:20	6.00	Reddish brown motttled grey MUDSTONE, N, Sh. H/D ratio falls
BH07	27Cs	14.45	14.48	89.5	260.9	2.91	6.4	2.46	5	00:45	0.48	outside of ISRM specification Reddish brown SILTSTONE, N, Sh
BH07	31Cs	18.85	18.90	84.3	235.0	2.79	3.8	2.55	5	01:42	1.42	Reddish brown MUDSTONE, N, Ot
gonoral ro												

general remarks

sample obtained from vertically drilled core (unless specified), test machine - VJT6000

coding: moisture condition sample storage failure mode

N - natural moisture content U - not wrapped Ax - axial cleavage

F - fully saturated F - wrapped in cling film/foil Ca - cataclasis S - soaked W - waxed Sh - shear

P - air/partially dried G - contained in sealed Geoline Ex - explosive Ot - other

CONTRACT CHECKED TB 35338

## Geotechnical Engineering Limited

## **POINT LOAD STRENGTH TEST**

I.S.R.M. Suggested Methods: 2007 Edition

### CLIENT CARDIFF PARKWAY DEVELOPMENTS LIMITED



### SITE CARDIFF PARKWAY INITIAL GROUND INVESTIGATION

borehole /trial pit	sample depth	test type	test orien-	moisture condition	width	length	platen sep.	failure load	equiv. diam.	ls	size factor	ls(50)	
no.	(m)		tation		W	L	D	Р	De	(MPa)		(MPa)	description and remarks
					(mm)	(mm)	(mm)	(kN)	(mm)				
BH04	14.00	D	Y	Р		60	60	2.75	60.00	0.76	1.09	0.83	Reddish brown mottled grey MUDSTONE
BH04	14.00	Α	Х	Р	60		55	3.61	64.82	0.86	1.12	0.97	Reddish brown mottled grey MUDSTONE
BH04	14.75	D	Υ	Р		70	85	1.28	85.00	0.18	1.27	0.22	Reddish brown mottled grey MUDSTONE
BH04	14.75	Α	Х	Р	85		75	3.85	90.09	0.47	1.30	0.62	Reddish brown mottled grey MUDSTONE
BH05	6.95	Α	Х	Р	85		40	1.18	65.80	0.27	1.13	0.31	Reddish brown MUDSTONE
BH05	13.20	D	Y	Р		50	90	0.74	90.00	0.09	1.30	0.12	Reddish brown MUDSTONE
BH05	13.20	Α	Х	Р	90		50	0.82	75.69	0.14	1.21	0.17	Reddish brown MUDSTONE
BH05	17.50	D	Y	Р		60	90	2.19	90.00	0.27	1.30	0.35	Reddish brown mottled grey SANDSTONE
BH05	17.50	Α	Х	Р	90		70	2.38	89.56	0.30	1.30	0.39	Reddish brown mottled grey SANDSTONE
BH05	20.70	D	Y	Р		40	85	0.19	85.00	0.03	1.27	0.03	Reddish brown mottled grey SANDSTONE
BH05	20.70	Α	Х	Р	85		45	0.31	69.79	0.06	1.16	0.07	Reddish brown mottled grey SANDSTONE
BH07	11.50	Α	Х	Р	90		50	3.67	75.69	0.64	1.21	0.77	Reddish brown SILTSTONE
BH07	16.40	D	Y	Р		60	85	5.96	85.00	0.82	1.27	1.05	Purplish brown SANDSTONE
BH07	16.40	Α	Х	Р	85		55	5.17	77.15	0.87	1.22	1.06	Purplish brown SANDSTONE
BH07	21.20	D	Υ	Р		60	85	2.05	85.00	0.28	1.27	0.36	Purplish brown SANDSTONE
BH07	21.20	Α	Х	Р	85		60	6.09	80.58	0.94	1.24	1.16	Purplish brown SANDSTONE
ВН07	22.25	D	Υ	N		70	90	8.94	90.00	1.10	1.30	1.44	Purplish brown SANDSTONE
BH07	22.25	Α	Х	N	90		70	7.31	89.56	0.91	1.30	1.18	Purplish brown SANDSTONE

general remarks

tests carried out in accordance with I.S.R.M.(2007): Suggested Methods for Determining Point Load Strength test machine PLM02

test type	test orientation relative	to discontinuities	moisture condition	CONTRACT	CHECKED
A - axial	X - perpendicular	U - unknown	N - natural moisture content		
D - diametral	Y - parallel		P - partially air dried	35338	TB
I - irregular lump	Z - oblique		S - soaked		





Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.com

# **Final Report**

**Report No.:** 19-25161-1

Initial Date of Issue: 31-Jul-2019

Client Geotechnical Engineering Ltd

Client Address: Centurion House

Olympus Park Quedgeley Gloucester Gloucestershire

GL2 4NF

Contact(s): GEL

Wendy Jones

**Project** 35338D - Cardiff Parkway Initial Ground

Investigation

Quotation No.: Date Received: 25-Jul-2019

Order No.: Date Instructed: 25-Jul-2019

No. of Samples: 9

Turnaround (Wkdays): 5 Results Due: 31-Jul-2019

Date Approved: 31-Jul-2019

Approved By:

**Details:** Martin Dyer, Laboratory Manager





Project: 35338D - Cardiff Parkway Initial Ground Investigation

Topon source and the state of t													
Client: Geotechnical Engineering Ltd		Che	mtest Jo	ob No.:	19-25161	19-25161	19-25161	19-25161	19-25161	19-25161	19-25161	19-25161	19-25161
Quotation No.:		Chemte	st Sam	ple ID.:	864047	864048	864049	864050	864051	864052	864053	864054	864055
		Cli	ent Sam	ple ID.:	5B	7P	12P	15D	6D	13UT	2D	15P	26C
		Sample Location:			BH04	BH04	BH04	BH04	BH05	BH05	BH07	BH07	BH07
		Sample Type:			SOIL								
		Top Depth (m):			1.00	1.20	3.60	6.00	1.00	3.20	0.30	6.00	14.20
		Bottom Depth (m):			1.20	2.00	4.40	6.45	1.20	3.65	0.50	6.80	15.70
			Date Sa	ampled:	23-Jul-2019								
Determinand	Accred.	SOP	Units	LOD									
Moisture	N	2030	%	0.020	26	69	26	9.7	61	13	24	53	2.3
рН	U	2010		N/A	8.0			8.5	7.1	8.2		7.1	9.1
Magnesium (Water Soluble)	N	2120	g/l	0.010	< 0.010			< 0.010	0.024	< 0.010		0.093	0.011
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.079			0.11	0.17	0.013		1.2	0.030
Total Sulphur	U	2175	%	0.010	0.033			0.029	1.0	0.020		0.21	0.023
Chloride (Water Soluble)	U	2220	g/l	0.010	0.026			0.041	0.016	< 0.010		0.59	0.036
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010			< 0.010	< 0.010	< 0.010		< 0.010	< 0.010
Sulphate (Acid Soluble)	U	2430	%	0.010	0.046			0.023	0.45	< 0.010		0.42	< 0.010
LOI	U	2610	%	0.10		59	4.6						
Organic Matter	U	2625	%	0.40			1.6				3.1	< 0.40	



## **Test Methods**

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measurement by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.



### **Report Information**

### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### **Sample Retention and Disposal**

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>



# **APPENDIX E**

# **CHEMICAL ANALYSES**





#### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

### **Analytical Report Number: 19-45433**

Project / Site name: Cardiff Parkway Samples received on: 13/06/2019

Your job number: 35338 Samples instructed on: 13/06/2019

Your order number: Analysis completed by: 20/06/2019

**Report Issue Number:** 1 **Report issued on:** 20/06/2019

Samples Analysed: 5 water samples

Signed:

Rexona Rahman Head of Customer Services

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Sample Number				1244139	1244140	1244141	1244142	1244143
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				1	1	1	1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				12/06/2019	12/06/2019	12/06/2019	12/06/2019	12/06/2019
Time Taken				1115	1045	1130	1100	1050
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.7	7.6	8.0	7.4	7.9
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	280	< 15	52	36	16
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	3.96	7.89	5.10	4.86	6.91
Nitrate as N	mg/l	0.01	ISO 17025	1.45	0.04	0.99	0.01	0.02
Nitrite as N	μg/l	1	ISO 17025	80	6.4	78	8.1	9.2
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	12	13	8.0	13	9.3
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	1.5	< 0.3	1.1	< 0.3	< 0.3
Hardness - Total	mgCaCO3/I	1	ISO 17025	137	111	142	83.8	111
	ingedees/i		100 17025	10,		- T-	0510	***
Total Phenols Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene		0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene		0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	μg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene Pyrene	μg/l	0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	μg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l							
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01
Dibenz(a,h)anthracene	μg/l	0.01			< 0.01 < 0.01	< 0.01	< 0.01 < 0.01	
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH						1		
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.20	1.30	1.11	1.01	1.94
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.04	< 0.02	0.02	< 0.02	< 0.02
Calcium (dissolved)	mg/l	0.012	ISO 17025	29	24	31	21	23
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.5	0.4	0.4	0.5	0.4
Copper (dissolved)	μg/l	0.5	ISO 17025	4.8	4.8	5.8	3.3	8.8
Lead (dissolved)	μg/l	0.2	ISO 17025	1.2	0.3	0.6	0.2	< 0.2
Magnesium (dissolved)	mg/l	0.005	ISO 17025	16	12	16	7.8	13
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	0.5	< 0.5	0.7	0.6	0.6
Phosphorus (dissolved)	μg/l	20	ISO 17025	205	56.4	118	93.3	46.1
Selenium (dissolved)	μg/l	0.6	ISO 17025	0.8	< 0.6	0.8	< 0.6	< 0.6
Zinc (dissolved)	μg/l	0.5	ISO 17025	10	1.8	6.0	2.4	3.4





Lab Sample Number				1244139	1244140	1244141	1244142	1244143
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				1	1	1	1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				12/06/2019	12/06/2019	12/06/2019	12/06/2019	12/06/2019
Time Taken				1115	1045	1130	1100	1050
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	1113	1015	1150	1100	1030
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons			700 17005	. 10		. 1.0	. 1.0	.10
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C35 - C44	μg/l	10 10	NONE NONE	< 10 < 10				
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μд/і	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

	1	1			
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	w	NONE
	<u> </u>				I .

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.





#### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 19-47292**

Project / Site name: Cardiff Parkway Samples received on: 27/06/2019

Your job number: 35338 Samples instructed on: 27/06/2019

Your order number: Analysis completed by: 03/07/2019

Report Issue Number: 1 Report issued on: 03/07/2019

Samples Analysed: 5 water samples

Signed: Keroline Harel

Karolina Marek

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Sample Number				1253977	1253978	1253979	1253980	1253981
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				2	2	2	2	2
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				26/06/2019	26/06/2019	26/06/2019	26/06/2019	26/06/2019
Time Taken				1135	1125	1045	1025	1105
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.3	7.5	7.6	7.4	7.5
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	920	89	370	37	34
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	8.29	7.92	7.13	8.58	7.70
Nitrate as N	mg/l	0.01	ISO 17025	0.21	0.11	0.59	0.14	0.11
Nitrite as N	µg/l	1	ISO 17025	19	15	170	6.2	6.6
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	200	23	25	52	21
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l mg/l	1	ISO 17025	21	5.3	4.8	3.7	3.4
Total Oxidised Nitrogen (TON)		0.3		< 0.3	< 0.3	0.8	< 0.3	< 0.3
Hardness - Total	mg/l		NONE ISO 17025	< 0.3 168	< 0.3 103	161	< 0.3 200	< 0.3 146
naruriess - Total	mgCaCO3/I	1	150 17025	108	103	101	200	140
Total Phenols								
Total Phenois (monohydric)		10	100 17025	. 10	. 10	. 10	. 10	. 10
Total Phenois (mononydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated DAUs								
Speciated PAHs		0.04		0.01	0.04	0.01	0.01	0.04
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.99	3.38	1.02	0.82	1.13
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.10	< 0.02	< 0.02	< 0.02	< 0.02
Calcium (dissolved)	mg/l	0.012	ISO 17025	46	25	39	52	37
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.7	0.5	0.4	0.4	0.4
Copper (dissolved)	μg/l	0.5	ISO 17025	7.7	4.6	3.0	4.7	3.1
Lead (dissolved)	μg/l	0.2	ISO 17025	2.1	0.6	0.5	< 0.2	0.4
Magnesium (dissolved)	mg/l	0.005	ISO 17025	13	9.8	15	17	13
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	0.8	< 0.5	< 0.5	< 0.5	< 0.5
Phosphorus (dissolved)	μg/l	20	ISO 17025	280	35.2	206	35.3	34.3
Selenium (dissolved)	μg/l	0.6	ISO 17025	0.7	< 0.6	0.6	0.7	< 0.6
Zinc (dissolved)	μg/l	0.5	ISO 17025	20	5.6	8.0	0.9	2.5
. (	P9/ ·		023					





Lab Sample Number				1253977	1253978	1253979	1253980	1253981
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				2	2	2	2	2
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				26/06/2019	26/06/2019	26/06/2019	26/06/2019	26/06/2019
Time Taken				1135	1125	1045	1025	1105
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic > C7 - C8	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
		4						
TPH-CWG - Aromatic >C8 - C10		1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 TPH-CWG - Aromatic >C10 - C12	μg/l	10	ISO 17025 NONE	< 1.0 < 10				
TPH-CWG - Aromatic >C10 - C12	μg/l μg/l	1 10 10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16	µg/l µg/l µg/l	10 10	NONE NONE	< 10 < 10				
TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16 TPH-CWG - Aromatic >C16 - C21	µg/I µg/I µg/I µg/I	10	NONE NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16	µg/l µg/l µg/l	10 10 10	NONE NONE	< 10 < 10 < 10				
TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16 TPH-CWG - Aromatic >C16 - C21 TPH-CWG - Aromatic >C21 - C35	µg/l µg/l µg/l µg/l µg/l	10 10 10 10	NONE NONE NONE	< 10 < 10 < 10 < 10				

U/S = Unsuitable Sample I/S = Insufficient Sample





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(AI, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.





#### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

t: 01452 527 743 f: 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS** 

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

### **Analytical Report Number: 19-50413**

**Project / Site name:** Cardiff Parkway Samples received on: 18/07/2019

Your job number: 35338 Samples instructed on: 18/07/2019

Your order number: Analysis completed by: 24/07/2019

**Report Issue Number:** Report issued on: 24/07/2019

Samples Analysed: 5 water samples

Signed:

k. Lewicko

Katarzyna Lewicka Head of Reporting Section For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Sample Number				1270398	1270399	1270400	1270401	1270402
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				2	2	2	2	2
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				17/07/2019	17/07/2019	17/07/2019	17/07/2019	17/07/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		٩	Acc	Hone Supplied	попе вариса	Hone Supplied	Hone Supplied	None Supplied
Analytical Parameter	Units	Limit of detection	Sta					
(Water Analysis)	ij	ct o	tus lita					
		f	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.6	7.5	7.8	7.5	7.5
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	22	17	43	< 15	15
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	7.17	9.60	6.70	6.28	11.8
Nitrate as N	mg/l	0.01	ISO 17025	0.17	0.21	0.18	0.16	0.17
Nitrite as N	μg/l	1	ISO 17025	< 1.0	4.9	< 1.0	< 1.0	2.8
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	38	38	40	120	76
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	11	8.9	4.2	6.1	12
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Hardness - Total	mgCaCO3/I	1	ISO 17025	277	177	243	248	167
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	//	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene Acenaphthene		0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
		0.01		< 0.01	< 0.01	< 0.01	< 0.01	
Anthracene Fluoranthene	μg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01 < 0.01
	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		< 0.01
Pyrene Penga(a)anthracana	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01 < 0.01	< 0.01
Benzo(a)anthracene Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	μg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
berizo(grii)peryierie	μg/ι	0.01	150 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH	n	0.10	100 17025	× 0.10	z 0.10	× 0.10	× 0.10	-010
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	4.40	3.45	1.26	1.29	2.52
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Calcium (dissolved)	mg/l	0.012	ISO 17025	74	44	63	64	39
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.2	0.5	0.6	0.3
Copper (dissolved)	μg/l	0.5	ISO 17025	1.7	2.4	10	3.3	3.9
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	3.8	0.6	0.4	0.6
Magnesium (dissolved)	mg/l	0.005	ISO 17025	22	16	21	21	17
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.3	1.3	1.2	0.8	1.9
Phosphorus (dissolved)	μg/l	20	ISO 17025	191	158	605	269	201
Selenium (dissolved)	μg/l	0.6	ISO 17025	0.7	< 0.6	< 0.6	< 0.6	1.3
Zinc (dissolved)	μg/l	0.5	ISO 17025	1.6	7.3	14	4.5	8.9





Lab Sample Number				1270398	1270399	1270400	1270401	1270402
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				2	2	2	2	2
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				17/07/2019	17/07/2019	17/07/2019	17/07/2019	17/07/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons  TPH-CWG - Aliphatic >C5 - C6	µq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C6  TPH-CWG - Aliphatic >C8 - C10	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/I μα/I	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic > C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μq/l	10	NONE	< 10	< 10	< 10	< 10	< 10
	1. 3/	•						
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------	--

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.





#### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

### **Analytical Report Number: 19-52227**

Project / Site name: Cardiff Parkway Samples received on: 31/07/2019

Your job number: 35338 Samples instructed on: 31/07/2019

Your order number: Analysis completed by: 06/08/2019

**Report Issue Number:** 1 **Report issued on:** 06/08/2019

**Samples Analysed:** 5 water samples

Signed: Keroline Harel

Karolina Marek

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Sample Number				1279524	1279525	1279526	1279527	1279528
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				1	1	1	1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				30/07/2019	30/07/2019	30/07/2019	30/07/2019	30/07/2019
Time Taken				None Supplied				
			<b>&gt;</b>					
Annal Maria Barrana da an	_	de Li	S					
Analytical Parameter	Units	Limit of detection	협					
(Water Analysis)	ivi	of	Accreditation Status					
General Inorganics		1						
pH	pH Units	N/A	ISO 17025	7.7	7.4	7.4	7.4	7.4
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	110	150	1000	86	910
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	7.36	7.31	7.14	7.75	6.47
Nitrate as N	mg/l	0.01	ISO 17025	2.01	0.48	0.38	0.45	0.56
Nitrite as N	μg/l	1	ISO 17025	55	13	7.9	8.2	4.5
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	31	21	20	26	22
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	2.8	3.2	5.0	7.6	3.7
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	2.1	0.5	0.4	0.5	0.6
Hardness - Total	mgCaCO3/l	1	ISO 17025	154	125	148	160	180
Total Phenols								
		10	100 17025	< 10	< 10	< 10	. 10	< 10
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	//	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/I μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/I μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/I μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/I μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/I μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Derizo(giii)peryierie	р9/1	0.01	130 17023	₹ 0.01	₹ 0.01	₹ 0.01	₹ 0.01	₹ 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.78	3.88	1.20	4.63	1.34
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.05	0.02	0.03	0.04	< 0.02
Calcium (dissolved)	mg/l	0.012	ISO 17025	45	35	42	45	51
Chromium (dissolved)	μg/l	0.012	ISO 17025	2.4	0.4	0.3	0.7	0.5
Copper (dissolved)	μg/l	0.5	ISO 17025	13	4.5	16	4.7	6.9
Lead (dissolved)	μg/l	0.2	ISO 17025	1.7	0.5	1.5	1.8	0.3
Magnesium (dissolved)	mg/l	0.005	ISO 17025	9.9	9.1	10	12	13
Mercury (dissolved)	μg/l	0.005	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.0	1.0	1.0	1.3	1.0
Phosphorus (dissolved)	μg/l	20	ISO 17025	156	131	477	143	340
Selenium (dissolved)	μg/I μg/I	0.6	ISO 17025	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Zinc (dissolved)	μg/l	0.5	ISO 17025	16	2.1	12	21	5.1
	P9/1	0.5	100 17023			14		J.1





Lab Sample Number				1279524	1279525	1279526	1279527	1279528
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				1	1	1	1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				30/07/2019	30/07/2019	30/07/2019	30/07/2019	30/07/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μq/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	ug/l	10	NONE	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.





#### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 19-52685**

Project / Site name: Cardiff Parkway Samples received on: 02/08/2019

Your job number: 35338 Samples instructed on: 02/08/2019

Your order number: Analysis completed by: 09/08/2019

**Report Issue Number:** 1 **Report issued on:** 09/08/2019

**Samples Analysed:** 4 water samples

Signed: Karoline Harel

Karolina Marek

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Cample Number				1201025	1201026	1201027	1201020	
Lab Sample Number		1281935	1281936	1281937	1281938			
Sample Reference Sample Number				BH02 1	BH03 1	BH04 1	BH05 1	
Depth (m)				0.88	1.03	1.13	1.22	
				30/07/2019	30/07/2019	30/07/2019	30/07/2019	
Date Sampled Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Time Taken			1	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.5	7.6	7.6	7.7	
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	110	830	1500	330	
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	3.85	8.08	12.4	10.5	
Nitrate as N	mg/l	0.01	ISO 17025	0.35	0.24	0.27	0.57	
Nitrite as N	μg/l	1	ISO 17025	15	14	11	14	
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	1700	50	74	1900	
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	2.4	< 1.0	1.0	2.9	
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	0.4	< 0.3	< 0.3	0.6	
Hardness - Total	mgCaCO3/I	1	ISO 17025	255	159	362	291	
	55/1	-						
Total Phenois								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
· · ·		•						
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.68	1.16	0.82	1.09	
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.04	< 0.02	< 0.02	< 0.02	
Calcium (dissolved)	mg/l	0.012	ISO 17025	66	28	83	44	
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.2	0.5	0.4	0.2	
Copper (dissolved)	μg/l	0.5	ISO 17025	6.1	6.9	6.7	2.6	
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.2	< 0.2	< 0.2	
Magnesium (dissolved)	mg/l	0.005	ISO 17025	22	22	37	44	
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	0.64	
Nickel (dissolved)	μg/l	0.5	ISO 17025	3.1	3.1	3.0	4.3	
Phosphorus (dissolved)	μg/l	20	ISO 17025	< 20.0	30.2	< 20.0	23.5	
Selenium (dissolved)	μg/l	0.6	ISO 17025	1.5	3.9	3.9	17	
Zinc (dissolved)	μg/l	0.5	ISO 17025	2.1	4.7	1.3	< 0.5	





Lab Sample Number	1281935	1281936	1281937	1281938				
Sample Reference				BH02	BH03	BH04	BH05	
Sample Number				1	1	1	1	
Depth (m)				0.88	1.03	1.13	1.22	
Date Sampled				30/07/2019	30/07/2019	30/07/2019	30/07/2019	
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	μg/l	1	ISO 17025		< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Petroleum Hydrocarbons  TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	24	
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	95	
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	1700	
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	300	
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	1800	
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	2100	
TPH-CWG - Aromatic >C5 - C7	ug/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >C7 - C8	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >C8 - C10	μg/I μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 1.0	< 10	
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic > C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic > C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	
		10						

U/S = Unsuitable Sample I/S = Insufficient Sample





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025	
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025	
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025	
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025	
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE	
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025	
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025	
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025	
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025	
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025	
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025	
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025	
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025	
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025	
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE	
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE	
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE	





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH02	1	W	19-52685	1281935	С	Biological oxygen demand (total) of water	L086-PL	С
BH03	1	W	19-52685	1281936	С	Biological oxygen demand (total) of water	L086-PL	С
BH04	1	W	19-52685	1281937	С	Biological oxygen demand (total) of water	L086-PL	С
BH05	1	W	19-52685	1281938	С	Biological oxygen demand (total) of water	L086-PL	С





#### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

# **Analytical Report Number: 19-52892**

Project / Site name: Cardiff Parkway Samples received on: 02/08/2019

Your job number: 35338 Samples instructed on: 02/08/2019

Your order number: Analysis completed by: 12/08/2019

**Report Issue Number:** 1 **Report issued on:** 12/08/2019

Samples Analysed: 6 water samples

Signed:

Vineetha Meethale-Vettil Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





			1282924	1282925	1282926	1282927	1282928
			BH01	BH03	BH04	BH05	BH06
			1	1	1	1	1
			1.14	1.60	0.91	1.21	1.42
			01/08/2019	01/08/2019	01/08/2019	01/08/2019	01/08/2019
			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Units	Limit of detection	Accreditation Status					
pH Units	N/A	ISO 17025	7.5	7.7	7.6	8.0	7.1
μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
		1					< 10
μg/l	15	ISO 17025	97	22	1200	410	< 10 44
μg/l mg/l	0.1	NONE	97 2.77	22 5.21	1200 1.18		
						410	44
mg/l	0.1	NONE	2.77	5.21	1.18	410 7.26	44 9.02
mg/l mg/l	0.1	NONE ISO 17025	2.77 0.11	5.21 0.13	1.18 0.10	410 7.26 0.10	44 9.02 0.10
mg/l mg/l μg/l	0.1 0.01 1	NONE ISO 17025 ISO 17025	2.77 0.11 25	5.21 0.13 16	1.18 0.10 16	410 7.26 0.10 14	9.02 0.10 16
mg/l mg/l µg/l mg/l	0.1 0.01 1	NONE ISO 17025 ISO 17025 ISO 17025	2.77 0.11 25 28	5.21 0.13 16 74	1.18 0.10 16 26	410 7.26 0.10 14 730	9.02 0.10 16 210
	pH Units	pH Units N/A	pH Units N/A ISO 17025	Units N/A ISO 17025 7.5	O1/08/2019   O1/08/2019   None Supplied   None Supplied	01/08/2019   01/08/2019   01/08/2019   01/08/2019   None Supplied   None Sup	O1/08/2019   O1/





Lab Sample Number				1282924	1282925	1282926	1282927	1282928
Sample Reference				BH01	BH03	BH04	BH05	BH06
Sample Number				1	1	1	1	1
Depth (m)				1.14	1.60	0.91	1.21	1.42
Date Sampled				01/08/2019	01/08/2019	01/08/2019	01/08/2019	01/08/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16





Lab Sample Number	·			1282924	1282925	1282926	1282927	1282928
Sample Reference				BH01	BH03	BH04	BH05	BH06
Sample Number				1	1	1	1	1
Depth (m)				1.14	1.60	0.91	1.21	1.42
Date Sampled				01/08/2019	01/08/2019	01/08/2019	01/08/2019	01/08/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	•	•						
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.66	1.22	1.71	1.12	1.14
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.03	< 0.02	0.02	0.04	0.16
Calcium (dissolved)	mg/l	0.012	ISO 17025	71	51	38	25	30
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.5	0.6	0.4	1.2	2.1
Copper (dissolved)	μg/l	0.5	ISO 17025	18	10	3.6	6.0	14
Lead (dissolved)	μg/l	0.2	ISO 17025	0.4	< 0.2	< 0.2	1.9	1.3
Magnesium (dissolved)	mg/l	0.005	ISO 17025	25	21	18	16	38
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	0.19	< 0.05	0.07	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.4	2.7	1.4	3.1	3.8
Phosphorus (dissolved)	μg/l	20	ISO 17025	< 20.0	< 20.0	25.4	< 20.0	46.8
Selenium (dissolved)	μg/l	0.6	ISO 17025	1.2	1.7	2.8	2.2	2.2
Zinc (dissolved)	μg/l	0.5	ISO 17025	0.6	2.2	2.7	15	1.4





Lab Sample Number				1282924	1282925	1282926	1282927	1282928
Sample Reference				BH01	BH03	BH04	BH05	BH06
Sample Number				1	1	1	1	1
Depth (m)				1.14	1.60	0.91	1.21	1.42
Date Sampled				01/08/2019	01/08/2019	01/08/2019	01/08/2019	01/08/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
ο-xylene μg/l 1 ISO 17  1 ISO 17				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons





Lab Sample Number				1282924	1282925	1282926	1282927	1282928
Sample Reference				BH01	BH03	BH04	BH05	BH06
Sample Number				1	1	1	1	1
Depth (m)				1.14	1.60	0.91	1.21	1.42
Date Sampled				01/08/2019	01/08/2019	01/08/2019	01/08/2019	01/08/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic > C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic > C8 - C10	μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	μq/l	10	NONE	< 10	< 10	< 10	< 10	< 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$ 





Lab Sample Number				1282929				
Sample Reference				BH10				
Sample Number				1				
Depth (m)				0.90				
Date Sampled				01/08/2019				
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics			T		1	1	T	•
pH	pH Units	N/A	ISO 17025					
Total Cyanide	μg/l	10	ISO 17025					
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	430				
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	6.81				
Nitrate as N	mg/l	0.01	ISO 17025					
Nitrite as N	μg/l	1	ISO 17025					
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	270				
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	16				
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	< 0.3				
Hardness - Total	mgCaCO3/I	1	ISO 17025	413				
Total Phenols							_	_
Total Phonoic (monohydric)	ua/l	10	ISO 17025	< 10				





Lab Sample Number			-	1282929			
Sample Reference				BH10			
Sample Number				1			
Depth (m)				0.90			
Date Sampled				01/08/2019			
Time Taken				None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Speciated PAHs							
Naphthalene	μg/l	0.01	ISO 17025	< 0.01			
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01			
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01			
Fluorene	μg/l	0.01	ISO 17025	< 0.01			
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01			
Anthracene	μg/l	0.01	ISO 17025	< 0.01			
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Pyrene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01			
Chrysene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01			
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01			
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01			
Total PAH					 		
Total EPA-16 PAHs	μq/l	0.16	ISO 17025	< 0.16		I	





					1	1	r	1
Lab Sample Number				1282929				
Sample Reference				BH10				
Sample Number				1				
Depth (m)				0.90				
Date Sampled				01/08/2019				
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	2.89				
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.12				
Calcium (dissolved)	mg/l	0.012	ISO 17025	94				
Chromium (dissolved)	μg/l	0.2	ISO 17025	2.3				
Copper (dissolved)	μg/l	0.5	ISO 17025	16				
Lead (dissolved)	μg/l	0.2	ISO 17025	6.9				
Magnesium (dissolved)	mg/l	0.005	ISO 17025	43				
Mercury (dissolved)	μg/l	0.05	ISO 17025	0.12				
Nickel (dissolved)	μg/l	0.5	ISO 17025	7.9				
Phosphorus (dissolved)	μg/l	20	ISO 17025	1010				
Selenium (dissolved)	μg/l	0.6	ISO 17025	4.0				
Zinc (dissolved)	μg/l	0.5	ISO 17025	26				





Lab Sample Number				1282929		
Sample Reference				BH10		
Sample Number				1		
Depth (m)				0.90		
Date Sampled				01/08/2019		
Time Taken				None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			
Monoaromatics & Oxygenates						
Benzene	μg/l	1	ISO 17025	< 1.0		
Toluene	μg/l	1	ISO 17025	< 1.0		
Ethylbenzene	μg/l	1	ISO 17025	< 1.0		
p & m-xylene	μg/l	1	ISO 17025	< 1.0		
o-xylene	μg/l	1	ISO 17025	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0		

Petroleum Hydrocarbons





Lab Sample Number				1282929		
Sample Reference				BH10		
Sample Number				1		
Depth (m)				0.90		
Date Sampled				01/08/2019		
Time Taken				None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	·		
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C21 - C35	μq/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10		
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10		
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10		

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$ 





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

rmination of BTEX and MTBE in water by space GC-MS. Accredited matrices: SW PW rmination of total COD in water by reflux tion with acidified K2Cr2O7 followed by metry. Accredited matrices: SW, PW, GW.	Analytical Method Reference  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton  In-house method based on standard method 5210B.  In-house method based on USEPA8260  HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	Method number L082-PL L086-PL L073B-PL	Wet / Dry Analysis W	Accreditation Status  ISO 17025  ISO 17025  ISO 17025
oniacal Nitrogen by the discrete analyser rimetric) salicylate/nitroprusside method. didted matrices SW, GW, PW. rimination of biochemical oxygen demand in r (5 days). Accredited matrices: SW, PW, GW. rimination of BTEX and MTBE in water by space GC-MS. Accredited matrices: SW PW rimination of total COD in water by reflux tion with acidified K2Cr2O7 followed by metry. Accredited matrices: SW, PW, GW.	Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton  In-house method based on standard method 5210B.  In-house method based on USEPA8260  HACH DR/890 Colorimeter Procedures	L086-PL L073B-PL	W	ISO 17025
mination of BTEX and MTBE in water by space GC-MS. Accredited matrices: SW PW mination of total COD in water by reflux tion with acidified K2Cr2O7 followed by metry. Accredited matrices: SW, PW, GW.	5210B.  In-house method based on USEPA8260  HACH DR/890 Colorimeter Procedures	L073B-PL		
rmination of dissolved inorganic carbon in	HACH DR/890 Colorimeter Procedures		W	ISO 17025
tion with acidified K2Cr2O7 followed by metry. Accredited matrices: SW, PW, GW.	•	L065-PL		1
			W	ISO 17025
r by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
mination of phenols in water by continuous analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
mination of nitrate by reaction with sodium late and colorimetry. Accredited matrices SW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
anilamide and NED followed by discrete	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
mination of pH in water by electrometric urement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
mination of PAH compounds in water by ction in dichloromethane followed by GC-MS the use of surrogate and internal standards. dited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
mination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
mination of dichloromethane extractable ocarbons in water by GC-MS, speciation by oretation.	In-house method	L070-PL	W	NONE
TWO THE TREE TO THE TO THE	mination of metals in water by acidification ed by ICP-MS. Accredited Matrices: SW, GW, cept B=SW,GW, Hg=SW,PW, Al=SW,PW.  mination of metals in water by acidification ed by ICP-OES. Accredited Matrices SW, GW, rW.(Al, Cu,Fe,Zn).  mination of phenols in water by continuous nalyser. Accredited matrices: SW PW GW  mination of nitrate by reaction with sodium ate and colorimetry. Accredited matrices SW, W.  mination of nitrite in water by addition of anilamide and NED followed by discrete error (colorimetry). Accredited matrices SW, GW,  mination of pH in water by electrometric urement. Accredited matrices: SW PW GW  mination of PAH compounds in water by tion in dichloromethane followed by GC-MS are use of surrogate and internal standards. While the surrogate and internal standards. While mination of total cyanide by distillation ed by colorimetry. Accredited matrices: SW PW GW  mination of hardness in waters by calculation and magnesium. Accredited Matrices W, PW.  mination from nitrate and nitrite.  mination of TPH bands by HS-GC-MS/GC-FID  mination of dichloromethane extractable carbons in water by GC-MS, speciation by	Clesceri, Greenberg & Eaton  In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.  In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.  In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  In-house method based on Examination of Water and Wastewater Method PN-82/C-04579.08,  In-house method based on Examination of Water and Wastewater Weather & Polish Standard Method PN-82/C-04579.08,  In-house method based on Examination of Water and Wastewater Weather & Polish Standard Method PN-82/C-04579.08,  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton  In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests  In-house method based on USEPA 8270  In-house method based on USEPA 8270  In-house method based on USEPA 8270  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08  In-house me	Clesceri, Greenberg & Eaton  Inhouse method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.  Inhouse method based on MEWAM 2006 Methods for the O20 & 200.8 "for the determination of trace elements in water by ICP-MS.  Inhouse method based on MEWAM 2006 Methods for the Determination of Metals in Soil.  Inhouse method based on Examination of Metals in Soil.  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  Inhouse method based on Examination of Water and Wastewater No.8 Polish Standard Method PN-82/C-04579.08,  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  Inhouse method based on USEPA 8270  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Polish Standard Method PN-82/C-04579.08  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Polish Standard Method PN-82/C-04579.08  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Polish Standard Method PN-82/C-04579.08  Inhouse method PN-82/C-04579.08  Inhouse method PN-82/C-04579.08  Inhouse method based on Examination o	Clesceri, Greenberg & Eaton  In-house method based on USEPA Method do USEPA Method for the Determination of Metals in Soil.  In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on USEPA 8270  In-house method based on USEPA 8270  In-house method based on USEPA 8270  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method ba





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



Sample ID	Other_ID Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH01	1 W	19-52892	1282924	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH01	1 W	19-52892	1282924	С	Biological oxygen demand (total) of water	L086-PL	С
BH01	1 W	19-52892	1282924	С	pH at 20oC in water (automated)	L099-PL	С
BH03	1 W	19-52892	1282925	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH03	1 W	19-52892	1282925	С	Biological oxygen demand (total) of water	L086-PL	С
BH03	1 W	19-52892	1282925	С	pH at 20oC in water (automated)	L099-PL	С
BH04	1 W	19-52892	1282926	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH04	1 W	19-52892	1282926	С	Biological oxygen demand (total) of water	L086-PL	С
BH04	1 W	19-52892	1282926	С	pH at 20oC in water (automated)	L099-PL	С
BH05	1 W	19-52892	1282927	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH05	1 W	19-52892	1282927	С	Biological oxygen demand (total) of water	L086-PL	С
BH05	1 W	19-52892	1282927	С	pH at 20oC in water (automated)	L099-PL	С
BH06	1 W	19-52892	1282928	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH06	1 W	19-52892	1282928	С	Biological oxygen demand (total) of water	L086-PL	С
BH06	1 W	19-52892	1282928	С	pH at 20oC in water (automated)	L099-PL	С
BH10	1 W	19-52892	1282929	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH10	1 W	19-52892	1282929	С	Biological oxygen demand (total) of water	L086-PL	С
BH10	1 W	19-52892	1282929	С	pH at 20oC in water (automated)	L099-PL	С





#### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 19-55080**

Project / Site name: Cardiff Parkway Samples received on: 19/08/2019

Your job number: 35338 Samples instructed on: 19/08/2019

Your order number: Analysis completed by: 26/08/2019

**Report Issue Number:** 1 **Report issued on:** 26/08/2019

Samples Analysed: 5 water samples

Signed: Keroline Harel

Karolina Marek

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Sample Number				1293663	1293664	1293665	1293666	1293667
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				1	1	1	1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				15/08/2019	15/08/2019	15/08/2019	15/08/2019	15/08/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.5	7.5	7.4	7.5	7.3
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	430	700	430	130	370
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	6.43	6.63	3.76	3.88	5.80
Nitrate as N	mg/l	0.01	ISO 17025	0.31	0.37	0.34	0.39	0.02
Nitrite as N	μg/l	1	ISO 17025	110	130	53	78	15
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	23	26	20	13	35
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	8.7	10	8.7	8.4	11
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	0.4	0.5	0.4	0.5	< 0.3
Hardness - Total	mgCaCO3/I	1	ISO 17025	148	130	72.7	96.2	119
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs					1			1
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH Total EPA-16 PAHs	μq/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids	F3/,	0.10	130 17023	1 0.10	1 0.10	1 0.10	1 0.10	, 0.10
Arsenic (dissolved)	μg/l	0.15	ISO 17025	4.96	2.91	0.86	0.53	1.65
Cadmium (dissolved)	μg/I	0.13	ISO 17025	0.05	0.07	0.02	< 0.02	< 0.02
Calcium (dissolved)	mg/l	0.012	ISO 17025	43	37	22	28	35
Chromium (dissolved)	μg/l	0.012	ISO 17025	0.6	0.6	0.8	0.9	0.4
Copper (dissolved)	μg/l	0.5	ISO 17025	11	10	6.6	6.0	4.2
Lead (dissolved)	μg/l	0.2	ISO 17025	2.1	2.3	1.2	0.3	< 0.2
Magnesium (dissolved)	mg/l	0.005	ISO 17025	9.9	8.9	4.6	6.4	7.9
Mercury (dissolved)	mg/I µg/I	0.005	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/I μg/I	0.05	ISO 17025	1.0	1.5	1.0	0.7	1.2
Phosphorus (dissolved)		20	ISO 17025	242	135	1.0	125	123
Selenium (dissolved)	μg/l μg/l	0.6	ISO 17025	0.7	< 0.6	< 0.6	< 0.6	< 0.6
Zinc (dissolved)		0.6	ISO 17025	56	< 0.6 99	< 0.6 12	< 0.6 8.9	2.9
בוווכ (עוססטועכע)	μg/l	0.5	130 1/025	30	99	12	0.9	2.9





Lab Sample Number				1293663	1293664	1293665	1293666	1293667
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				1	1	1	1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				15/08/2019	15/08/2019	15/08/2019	15/08/2019	15/08/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons			1		T			
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C35 - C44	μg/l	10 10	NONE NONE	< 10 < 10				
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10		< 10
TPH-CWG - Aliphatic (C5 - C35) TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10 < 10	< 10	< 10 < 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
SW1	1	W	19-55080	1293663	С	Ammoniacal Nitrogen as N in water	L082-PL	С
SW1	1	W	19-55080	1293663	С	Biological oxygen demand (total) of water	L086-PL	С
SW1	1	W	19-55080	1293663	С	pH at 20oC in water (automated)	L099-PL	С
SW2	1	W	19-55080	1293664	С	Ammoniacal Nitrogen as N in water	L082-PL	С
SW2	1	W	19-55080	1293664	С	Biological oxygen demand (total) of water	L086-PL	С
SW2	1	W	19-55080	1293664	С	pH at 20oC in water (automated)	L099-PL	С
SW3	1	W	19-55080	1293665	С	Ammoniacal Nitrogen as N in water	L082-PL	С
SW3	1	W	19-55080	1293665	С	Biological oxygen demand (total) of water	L086-PL	С
SW3	1	W	19-55080	1293665	С	pH at 20oC in water (automated)	L099-PL	С
SW4	1	W	19-55080	1293666	С	Ammoniacal Nitrogen as N in water	L082-PL	С
SW4	1	W	19-55080	1293666	С	Biological oxygen demand (total) of water	L086-PL	С
SW4	1	W	19-55080	1293666	С	pH at 20oC in water (automated)	L099-PL	С
SW5	1	W	19-55080	1293667	С	Ammoniacal Nitrogen as N in water	L082-PL	С
SW5	1	W	19-55080	1293667	С	Biological oxygen demand (total) of water	L086-PL	С
SW5	1	W	19-55080	1293667	С	pH at 20oC in water (automated)	L099-PL	С





### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

# **Analytical Report Number: 19-55087**

Project / Site name: Cardiff Parkway Samples received on: 19/06/2019

Your job number: 35338 Samples instructed on: 19/08/2019

Your order number: Analysis completed by: 26/08/2019

**Report Issue Number:** 1 **Report issued on:** 26/08/2019

Samples Analysed: 1 water sample

Signed: Keroline Harel

Karolina Marek

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Carriela Normalian			-	1202700	1		
Lab Sample Number				1293700			
Sample Reference				BH07			
Sample Number				1 1.05	<b></b>	 <b>-</b>	
Depth (m)				15/08/2019			
Date Sampled							
Time Taken				None Supplied			
		Δ.	Accreditation Status				
Analytical Parameter	⊆	Limit of detection	Sta				
(Water Analysis)	Units	햜	ᄩ				
		3 4	* tion				
			_				
General Inorganics							
pH	pH Units	N/A	ISO 17025	6.9		I	
Total Cyanide	µg/l	10	ISO 17025	< 10			
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	800			
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	11.7			
Nitrate as N	mg/l	0.01	ISO 17025	0.07			
Nitrite as N	µg/l	1	ISO 17025	4.3		<b>I</b>	
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	27	<b>†</b>	1	
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	15	1	1	
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	< 0.3			
Hardness - Total	mgCaCO3/I	1	ISO 17025	434	1	1	
naraness rotal	mgcacos/i	-	150 17025	131			
Total Phenols							
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10			
				-	-	-	
Speciated PAHs							
Naphthalene	μg/l	0.01	ISO 17025	< 0.01			
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01			
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01			
Fluorene	μg/l	0.01	ISO 17025	< 0.01			
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01			
Anthracene	μg/l	0.01	ISO 17025	< 0.01			
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Pyrene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01			
Chrysene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01			
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01			
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01			
Total PAH					•		
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	<u> </u>	]	
Heavy Metals / Metalloids				•	T		•
Arsenic (dissolved)	μg/l	0.15	ISO 17025	4.70			
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02			
Calcium (dissolved)	mg/l	0.012	ISO 17025	110			
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.8			
Copper (dissolved)	μg/l	0.5	ISO 17025	16			
Lead (dissolved)	μg/l	0.2	ISO 17025	0.6			
Magnesium (dissolved)	mg/l	0.005	ISO 17025	41			
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05			
Nickel (dissolved)	μg/l	0.5	ISO 17025	5.6			
Phosphorus (dissolved)	μg/l	20	ISO 17025	155			
Selenium (dissolved)	μg/l	0.6	ISO 17025	2.0			
Zinc (dissolved)	μg/l	0.5	ISO 17025	10		Ī	





Lab Sample Number				1293700	ı	ı	1
Sample Reference				BH07			
Sample Number				1			
Depth (m)				1.05			
Date Sampled				15/08/2019			
Time Taken				None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics & Oxygenates							
Benzene	μg/l	1	ISO 17025	< 1.0			
Toluene	μg/l	1	ISO 17025	< 1.0			
Ethylbenzene	μg/l	1	ISO 17025	< 1.0			
p & m-xylene	μg/l	1	ISO 17025	< 1.0			
o-xylene	μg/l	1	ISO 17025	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0			
Petroleum Hydrocarbons  TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	1	1	
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0			
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0			
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10			
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10			
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10			
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10			
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10			
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10			
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0			
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0			
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0			
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10			1

U/S = Unsuitable Sample I/S = Insufficient Sample





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH07	1	W	19-55087	1293700	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH07	1	W	19-55087	1293700	С	Biological oxygen demand (total) of water	L086-PL	С
BH07	1	W	19-55087	1293700	С	pH at 20oC in water (automated)	L099-PL	С





### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

# **Analytical Report Number: 19-56806**

Project / Site name: Cardiff PArkway Samples received on: 29/08/2019

Your job number: 35338 Samples instructed on: 29/08/2019

Your order number: Analysis completed by: 04/09/2019

**Report Issue Number:** 1 **Report issued on:** 04/09/2019

Samples Analysed: 10 water samples

Signed: Karoline Harel

Karolina Marek

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Sample Number				1302759	1302760	1302761	1302762	1302763
Sample Reference				BH01	BH02	BH03	BH04	BH05
Sample Number				1	1	1	1	1
Depth (m)				1.00	0.58	1.37	0.79	1.10
Date Sampled				28/08/2019	17/08/2019	28/08/2019	17/08/2019	17/08/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.6	7.5	7.8	7.7	7.3
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	340	200	< 15	1400	280
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	2.40	2.91	3.78	4.42	8.36
Nitrate as N	mg/l	0.01	ISO 17025	0.49	0.37	0.10	0.30	0.35
Nitrite as N	μg/l	1	ISO 17025	24	14	24	14	16
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	6.3	11	46	20	25
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	1.4	5.8
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	0.5	0.4	< 0.3	0.3	0.4
Hardness - Total	mgCaCO3/I	1	ISO 17025	209	239	201	130	295
Total Phenois								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs		0.01		0.01	1 004	0.01	0.04	2.24
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.63	1.32	1.18	1.21	1.04
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	0.11	< 0.02	< 0.02	< 0.02
Calcium (dissolved)	mg/l	0.012	ISO 17025	49	62	50	31	66
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	0.2	0.4	< 0.2
Copper (dissolved)	μg/l	0.5	ISO 17025	2.5	3.1	2.2	1.8	2.1
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	0.2	< 0.2
Magnesium (dissolved)	mg/l	0.005	ISO 17025	21	20	18	13	32
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	< 0.5	2.0	1.6	1.9	3.7
Phosphorus (dissolved)	μg/l	20	ISO 17025	< 20.0	< 20.0	< 20.0	< 20.0	21.3
Selenium (dissolved)	μg/l	0.6	ISO 17025	1.1	0.9	1.3	3.1	1.7
Zinc (dissolved)	μg/l	0.5	ISO 17025	0.7	1.6	2.4	1.4	6.9





Lab Sample Number	Lab Sample Number					1302761	1302762	1302763
Sample Reference				BH01	BH02	BH03	BH04	BH05
Sample Number				1	1	1	1	1
Depth (m)				1.00	0.58	1.37	0.79	1.10
Date Sampled				28/08/2019	17/08/2019	28/08/2019	17/08/2019	17/08/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons  TPH-CWG - Aliphatic >C5 - C6	μq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic > C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μq/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample





Lab Sample Number		1302764	1302765	1302766	1302767	1302768							
Sample Reference				BH06	BH07	BH08	BH09	BH10					
Sample Number				1	1	1	1	1					
Depth (m)				1.01	1.02	1.12	0.76	0.70					
Date Sampled				28/08/2019	17/08/2019	27/08/2019	27/08/2019	27/08/2019					
Time Taken				None Supplied									
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status										
General Inorganics													
pH	pH Units	N/A	ISO 17025	7.1	7.3	7.2	7.6	7.3					
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10					
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	210	1000	1900	100	48					
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	9.75	11.0	17.9	18.6	37.4					
Nitrate as N	mg/l	0.01	ISO 17025	0.76	0.19	0.60	0.16	0.08					
Nitrite as N	μg/l	1	ISO 17025	26	5.6	21	46	5.3					
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	200	32	50	270	120					
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	1.1	2.3	9.2	8.7	85					
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	0.8	< 0.3	0.6	< 0.3	< 0.3					
Hardness - Total	mgCaCO3/I	1	ISO 17025	319	182	205	275	175					
Total Phenois		10	ISO 17025	< 10	< 10	< 10	< 10	48					
Total Phenols (monohydric)	μg/l	10	150 17025	< 10	< 10	< 10	< 10	48					
Speciated PAHs													
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Chrysene	μg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01									
Benzo(b)fluoranthene Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Benzo(a)pyrene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Total PAH	F Pai												
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16					
Heavy Metals / Metalloids													
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.35	0.86	1.64	0.75	3.16					
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.08	< 0.02	< 0.02	< 0.02	< 0.02					
Calcium (dissolved)	mg/l	0.012	ISO 17025	47	40	47	56	55					
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.2	0.3	1.2	0.3	< 0.2					
Copper (dissolved)	μg/l	0.5	ISO 17025	9.2	5.5	4.5	2.5	0.7					
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	0.6	< 0.2	< 0.2					
Magnesium (dissolved)	mg/l	0.005	ISO 17025	49	20	21	33	9.0					
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	0.14	0.11					
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.7	2.4	7.1	2.9	1.9					
Phosphorus (dissolved)	μg/l	20	ISO 17025	38.2	30.4	27.5	< 20.0	193					
Selenium (dissolved)	μg/l	0.6	ISO 17025	2.3	2.5	3.5	12	< 0.6					
Zinc (dissolved)	μg/l	0.5	ISO 17025	1.7	1.7	2.6	< 0.5	1.0					





Lab Sample Number				1302764	1302765	1302766	1302767	1302768
Sample Reference				BH06	BH07	BH08	BH09	BH10
Sample Number				1	1	1	1	1
Depth (m)				1.01	1.02	1.12	0.76	0.70
Date Sampled				28/08/2019	17/08/2019	27/08/2019	27/08/2019	27/08/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons			I					
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C35 - C44	μg/l	10 10	NONE NONE	< 10 < 10				
·	μg/l							
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic > C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



Sample ID	Other ID Sample Type	Job	Sample Number	Sample Deviation Code	test name	test ref	Test Deviation code
BH02	1 W	19-56806	1302760	С	BTEX and MTBE in water (Monoaromatics)	L073B-PL	С
BH02	1 W	19-56806	1302760	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH02	1 W	19-56806	1302760	С	Biological oxygen demand (total) of water	L086-PL	С
BH02	1 W	19-56806	1302760	С	Metals in water by ICP-MS (dissolved)	L012-PL	С
BH02	1 W	19-56806	1302760	С	Metals in water by ICP-OES (dissolved)	L039-PL	С
BH02	1 W	19-56806	1302760	С	Nitrate as N in water	L078-PL	С
BH02	1 W	19-56806	1302760	С	Nitrite as N in water	L082-PL	С
BH02	1 W	19-56806	1302760	С	Total Hardness of water	L045-PL	С
BH02	1 W	19-56806	1302760	С	Total cyanide in water	L080-PL	С
BH02	1 W	19-56806	1302760	С	Total oxidised nitrogen in water	L078/82-PL	С
BH02	1 W	19-56806	1302760	С	pH at 20oC in water (automated)	L099-PL	С
BH04	1 W	19-56806	1302762	С	BTEX and MTBE in water (Monoaromatics)	L073B-PL	С
BH04	1 W	19-56806	1302762	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH04	1 W	19-56806	1302762	С	Biological oxygen demand (total) of water	L086-PL	С
BH04	1 W	19-56806	1302762	С	Metals in water by ICP-MS (dissolved)	L012-PL	С
BH04	1 W	19-56806	1302762	С	Metals in water by ICP-OES (dissolved)	L039-PL	С
BH04	1 W	19-56806	1302762	С	Nitrate as N in water	L078-PL	С
BH04	1 W	19-56806	1302762	С	Nitrite as N in water	L082-PL	С
BH04	1 W	19-56806	1302762	С	Total Hardness of water	L045-PL	С
BH04	1 W	19-56806	1302762		Total cvanide in water	L080-PL	c
BH04	1 W	19-56806	1302762	С	Total oxidised nitrogen in water	L078/82-PL	С
BH04	1 W	19-56806	1302762	С	pH at 20oC in water (automated)	L099-PL	С
BH05	1 W	19-56806	1302763	С	BTEX and MTBE in water (Monoaromatics)	L073B-PL	С
BH05	1 W	19-56806	1302763	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH05	1 W	19-56806	1302763	С	Biological oxygen demand (total) of water	L086-PL	С
BH05	1 W	19-56806	1302763	С	Metals in water by ICP-MS (dissolved)	L012-PL	С
BH05	1 W	19-56806	1302763	С	Metals in water by ICP-OES (dissolved)	L039-PL	С
BH05	1 W	19-56806	1302763	С	Nitrate as N in water	L078-PL	С
BH05	1 W	19-56806	1302763	С	Nitrite as N in water	L082-PL	С
BH05	1 W	19-56806	1302763	С	Total Hardness of water	L045-PL	С
BH05	1 W	19-56806	1302763	С	Total cyanide in water	L080-PL	С
BH05	1 W	19-56806	1302763	С	Total oxidised nitrogen in water	L078/82-PL	С
BH05	1 W	19-56806	1302763	С	pH at 20oC in water (automated)	L099-PL	С
BH07	1 W	19-56806	1302765	С	BTEX and MTBE in water (Monoaromatics)	L073B-PL	С
BH07	1 W	19-56806	1302765	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH07	1 W	19-56806	1302765	С	Biological oxygen demand (total) of water	L086-PL	С
BH07	1 W	19-56806	1302765	С	Metals in water by ICP-MS (dissolved)	L012-PL	С
BH07	1 W	19-56806	1302765	С	Metals in water by ICP-OES (dissolved)	L039-PL	С
BH07	1 W	19-56806	1302765	С	Nitrate as N in water	L078-PL	С
BH07	1 W	19-56806	1302765	С	Nitrite as N in water	L082-PL	С
BH07	1 W	19-56806	1302765	С	Total Hardness of water	L045-PL	С
BH07	1 W	19-56806	1302765	С	Total cyanide in water	L080-PL	С
BH07	1 W	19-56806	1302765	С	Total oxidised nitrogen in water	L078/82-PL	С
BH07	1 W	19-56806	1302765	С	pH at 20oC in water (automated)	L099-PL	С
BH08	1 W	19-56806	1302766	С	Biological oxygen demand (total) of water	L086-PL	С
BH09	1 W	19-56806	1302767	С	Biological oxygen demand (total) of water	L086-PL	С
BH10	1 W	19-56806	1302768	С	Biological oxygen demand (total) of water	L086-PL	С





### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

t: 01452 527 743 f: 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS** 

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 19-56810**

**Project / Site name:** Cardiff Parkway Samples received on: 29/08/2019

Your job number: 35338 Samples instructed on: 29/08/2019

Your order number: Analysis completed by: 04/09/2019

**Report Issue Number:** Report issued on: 04/09/2019

Samples Analysed: 5 water samples

Signed:

k. Lewicko

Katarzyna Lewicka

Head of Reporting Section For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Sample Number		1302779	1302780	1302781	1302782	1302783							
Sample Reference				SW1	SW2	SW3	SW4	SW5					
Sample Number				1	1	1	1	1					
Depth (m)				0.00	0.00	0.00	0.00	0.00					
Date Sampled				28/08/2019	28/08/2019	28/08/2019	28/08/2019	28/08/2019					
Time Taken				None Supplied									
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status										
General Inorganics													
pН	pH Units	N/A	ISO 17025	7.8	7.5	7.3	7.3	7.5					
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10					
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	490	120	290	47	< 15					
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	5.23	7.09	7.45	4.95	5.14					
Nitrate as N	mg/l	0.01	ISO 17025	0.26	0.10	0.11	0.13	0.10					
Nitrite as N	μg/l	1	ISO 17025	53	9.4	5.7	16	9.3					
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	17	25	28	21	17					
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	4.9	7.6	9.8	4.1	7.2					
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	0.3	< 0.3	< 0.3	< 0.3	< 0.3					
Hardness - Total	mgCaCO3/I	1	ISO 17025	241	202	139	140	189					
Total Phenols Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10					
Total Friendis (Mondriyunc)	μ9/1	10	130 17023	< 10	< 10	< 10	< 10	< 10					
Speciated PAHs													
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					
Total PAH													
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16					
TOTAL EL A-10 FALIS	ру/і	0.10	130 1/025	< U.10	V 0.10	< U.10	V 0.10	V 0.10					
Heavy Metals / Metalloids													
Arsenic (dissolved)	μg/l	0.15	ISO 17025	2.47	2.62	0.69	0.95	1.09					
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	0.04	0.02	< 0.02	< 0.02					
Calcium (dissolved)	mg/l	0.012	ISO 17025	68	59	41	40	56					
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.5	0.4	0.3	0.3	0.3					
Copper (dissolved)	μg/l	0.5	ISO 17025	4.3	6.2	4.8	3.4	4.2					
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.5	0.2	< 0.2	0.2					
Magnesium (dissolved)	mg/l	0.005	ISO 17025	17	13	8.7	9.7	12					
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05					
Nickel (dissolved)	μg/l	0.5	ISO 17025	0.9	0.8	0.6	< 0.5	< 0.5					
Phosphorus (dissolved)	μg/l	20	ISO 17025	135	104	93.7	75.6	58.4					
Selenium (dissolved)	μg/l	0.6	ISO 17025	0.7	< 0.6	< 0.6	< 0.6	< 0.6					
Zinc (dissolved)	μg/l	0.5	ISO 17025	3.0	8.0	6.4	1.5	5.7					





Lab Sample Number				1302779	1302780	1302781	1302782	1302783
Sample Reference				1302779 SW1	1302780 SW2	SW3	1302782 SW4	1302783 SW5
Sample Number				1	1	1	1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				28/08/2019	28/08/2019	28/08/2019	28/08/2019	28/08/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Tille Takell		1	1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons		1	•					
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 1.0
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

rmination of BTEX and MTBE in water by space GC-MS. Accredited matrices: SW PW rmination of total COD in water by reflux tion with acidified K2Cr2O7 followed by metry. Accredited matrices: SW, PW, GW.	Analytical Method Reference  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton  In-house method based on standard method 5210B.  In-house method based on USEPA8260  HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	Method number L082-PL L086-PL L073B-PL	Wet / Dry Analysis W	Accreditation Status  ISO 17025  ISO 17025  ISO 17025
oniacal Nitrogen by the discrete analyser rimetric) salicylate/nitroprusside method. didted matrices SW, GW, PW. rimination of biochemical oxygen demand in r (5 days). Accredited matrices: SW, PW, GW. rimination of BTEX and MTBE in water by space GC-MS. Accredited matrices: SW PW rimination of total COD in water by reflux tion with acidified K2Cr2O7 followed by metry. Accredited matrices: SW, PW, GW. rimination of dissolved inorganic carbon in	Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton  In-house method based on standard method 5210B.  In-house method based on USEPA8260  HACH DR/890 Colorimeter Procedures	L086-PL L073B-PL	W	ISO 17025
mination of BTEX and MTBE in water by space GC-MS. Accredited matrices: SW PW mination of total COD in water by reflux tion with acidified K2Cr2O7 followed by metry. Accredited matrices: SW, PW, GW.	5210B.  In-house method based on USEPA8260  HACH DR/890 Colorimeter Procedures	L073B-PL		
rmination of dissolved inorganic carbon in	HACH DR/890 Colorimeter Procedures		W	ISO 17025
tion with acidified K2Cr2O7 followed by metry. Accredited matrices: SW, PW, GW.	•	L065-PL		1
			W	ISO 17025
r by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
mination of phenols in water by continuous analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
mination of nitrate by reaction with sodium late and colorimetry. Accredited matrices SW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
anilamide and NED followed by discrete	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
mination of pH in water by electrometric urement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
mination of PAH compounds in water by ction in dichloromethane followed by GC-MS the use of surrogate and internal standards. dited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
mination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
mination of dichloromethane extractable ocarbons in water by GC-MS, speciation by oretation.	In-house method	L070-PL	W	NONE
TWO THE TREE TO THE TO THE	mination of metals in water by acidification ed by ICP-MS. Accredited Matrices: SW, GW, cept B=SW,GW, Hg=SW,PW, Al=SW,PW.  mination of metals in water by acidification ed by ICP-OES. Accredited Matrices SW, GW, rW.(Al, Cu,Fe,Zn).  mination of phenols in water by continuous nalyser. Accredited matrices: SW PW GW  mination of nitrate by reaction with sodium ate and colorimetry. Accredited matrices SW, W.  mination of nitrite in water by addition of anilamide and NED followed by discrete error (colorimetry). Accredited matrices SW, GW,  mination of pH in water by electrometric urement. Accredited matrices: SW PW GW  mination of PAH compounds in water by tion in dichloromethane followed by GC-MS are use of surrogate and internal standards. While the surrogate and internal standards. While mination of total cyanide by distillation ed by colorimetry. Accredited matrices: SW PW GW  mination of hardness in waters by calculation and magnesium. Accredited Matrices W, PW.  mination from nitrate and nitrite.  mination of TPH bands by HS-GC-MS/GC-FID  mination of dichloromethane extractable carbons in water by GC-MS, speciation by	Clesceri, Greenberg & Eaton  In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.  In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.  In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  In-house method based on Examination of Water and Wastewater Method PN-82/C-04579.08,  In-house method based on Examination of Water and Wastewater Weather & Polish Standard Method PN-82/C-04579.08,  In-house method based on Examination of Water and Wastewater Weather & Polish Standard Method PN-82/C-04579.08,  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton  In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests  In-house method based on USEPA 8270  In-house method based on USEPA 8270  In-house method based on USEPA 8270  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08  In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08  In-house me	Clesceri, Greenberg & Eaton  Inhouse method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.  Inhouse method based on MEWAM 2006 Methods for the O20 & 200.8 "for the determination of trace elements in water by ICP-MS.  Inhouse method based on MEWAM 2006 Methods for the Determination of Metals in Soil.  Inhouse method based on Examination of Metals in Soil.  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  Inhouse method based on Examination of Water and Wastewater No.8 Polish Standard Method PN-82/C-04579.08,  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)  Inhouse method based on USEPA 8270  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Polish Standard Method PN-82/C-04579.08  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Polish Standard Method PN-82/C-04579.08  Inhouse method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Polish Standard Method PN-82/C-04579.08  Inhouse method PN-82/C-04579.08  Inhouse method PN-82/C-04579.08  Inhouse method based on Examination o	Clesceri, Greenberg & Eaton  In-house method based on USEPA Method do USEPA Method for the Determination of Metals in Soil.  In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on USEPA 8270  In-house method based on USEPA 8270  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil.  In-house method based on Examination of Metals in Soil Metals in Soil Metals in Soil Metals in Soil Metals in So





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.





#### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 19-59416**

Project / Site name: Cardiff Parkway Samples received on: 13/09/2019

Your job number: 35338 Samples instructed on: 13/09/2019

Your order number: Analysis completed by: 20/09/2019

**Report Issue Number:** 1 **Report issued on:** 20/09/2019

Samples Analysed: 5 water samples

Signed: Keroline Harel

Karolina Marek

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Sample Number				1315154	1315155	1315156	1315157	1315158
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				1	1	1	1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				12/09/2019	12/09/2019	12/09/2019	12/09/2019	12/09/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.7	7.5	7.3	7.3	7.5
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	350	33	62	270	39
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	6.37	5.89	5.69	4.95	5.59
Nitrate as N	mg/l	0.01	ISO 17025	0.77	0.29	0.30	0.30	0.26
Nitrite as N	μg/l	1	ISO 17025	93	6.1	5.1	46	7.4
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	25	24	31	20	23
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	2.3	1.4	6.9	1.4	1.4
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	0.9	< 0.3	0.3	0.3	< 0.3
Hardness - Total	mgCaCO3/I	1	ISO 17025	163	192	189	192	167
Total Phenois		10	700 4700F	. 10	T10	. 10	. 10	10
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	2.11	1.75	0.82	0.82	1.60
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.02	< 0.02	0.03	< 0.02	0.06
Calcium (dissolved)	mg/l	0.012	ISO 17025	43	53	51	51	46
Chromium (dissolved)	μg/l	0.2	ISO 17025	1.0	0.5	0.5	0.5	0.8
Copper (dissolved)	μg/l	0.5	ISO 17025	6.3	4.6	3.7	3.2	8.4
Lead (dissolved)	μg/l	0.2	ISO 17025	0.8	< 0.2	6.2	0.6	< 0.2
Magnesium (dissolved)	mg/l	0.005	ISO 17025	14	15	15	16	13
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	0.7	0.8	0.9	0.7	0.9
Phosphorus (dissolved)	μg/l	20	ISO 17025	174	110	119	174	146
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6	< 0.6	0.6	< 0.6	< 0.6
Zinc (dissolved)	μg/l	0.5	ISO 17025	5.9	4.8	6.7	11	1.7





Lab Sample Number				1315154	1315155	1315156	1315157	1315158
Sample Reference				1315154 SW1	1315155 SW2	SW3	1315157 SW4	1315158 SW5
Sample Number				1	1		1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				12/09/2019	12/09/2019	12/09/2019	12/09/2019	12/09/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Tille Takell		1	1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons		1	•					
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total oxidised nitrogen in water Calculation from nitrate and nitrite.		In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.





#### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 19-59418**

Project / Site name: Cardiff Parkway Samples received on: 13/09/2019

Your job number: 35338 Samples instructed on: 13/09/2019

Your order number: Analysis completed by: 20/09/2019

**Report Issue Number:** 1 **Report issued on:** 20/09/2019

**Samples Analysed:** 6 water samples

Signed: Keroline Harel

Karolina Marek

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Sample Number				1315162	1315163	1315164	1315165	1315166
Sample Reference				BH02	BH04	BH05	BH07	BH08
Sample Number				1	1	1	1	1
Depth (m)				0.64	0.88	1.20	1.08	1.18
Date Sampled				12/09/2019	12/09/2019	12/09/2019	12/09/2019	12/09/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.4	7.8	7.5	7.4	7.5
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	68	1200	74	1000	2100
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	3.58	2.00	9.87	9.18	26.2
Nitrate as N	mg/l	0.01	ISO 17025	0.65	0.45	0.30	0.36	0.39
Nitrite as N	μg/l	1	ISO 17025	18	11	12	2.3	16
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	100	53	1700	34	140
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	< 1.0	< 1.0	1.2	8.4	1.8
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	0.7	0.5	0.3	0.4	0.4
Hardness - Total	mgCaCO3/I	1	ISO 17025	302	186	299	205	231
Total Phenols Total Phenols (monohydric)		10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Total Phenois (mononyuric)	μg/l	10	150 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μq/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
	P3//	0.20	-50 1,025	, 0.20	, 0.20	, 0.20	- 5.25	. 0.20
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.82	1.77	1.27	1.05	3.36
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.17	< 0.02	< 0.02	0.04	0.03
Calcium (dissolved)	mg/l	0.012	ISO 17025	76	44	55	38	29
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	0.8	0.4	0.4	0.5
Copper (dissolved)	μg/l	0.5	ISO 17025	5.8	0.9	1.3	2.5	3.1
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	0.6	0.3
Magnesium (dissolved)	mg/l	0.005	ISO 17025	28	19	40	27	38
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	0.12	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	2.4	1.2	3.7	2.4	2.7
Phosphorus (dissolved)	μg/l	20	ISO 17025	< 20.0	25.5	< 20.0	20.8	39.7
Selenium (dissolved)	μg/l	0.6	ISO 17025	0.9	3.8	8.7	3.9	9.4
Zinc (dissolved)	μg/l	0.5	ISO 17025	4.7	2.1	2.9	3.4	2.3





Lab Sample Number				1315162	1315163	1315164	1315165	1315166
Sample Reference				BH02	BH04	BH05	BH07	BH08
Sample Number				1	1	1	1	1
Depth (m)				0.64	0.88	1.20	1.08	1.18
Date Sampled				12/09/2019	12/09/2019	12/09/2019	12/09/2019	12/09/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons  TPH-CWG - Aliphatic >C5 - C6	μq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	ug/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic > C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10





				1015163	1	r	r	1
Lab Sample Number				1315167				
Sample Reference Sample Number				BH09 1	-	<b>-</b>	<b>-</b>	-
				0.89				
Depth (m)				12/09/2019				
Date Sampled Time Taken								
rime raken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
рН	pH Units	N/A	ISO 17025	7.6				
Total Cyanide	μg/l	10	ISO 17025	< 10				
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	170				
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	15.1				
Nitrate as N	mg/l	0.01	ISO 17025	0.34				
Nitrite as N	μg/l	1	ISO 17025	11	i e	1	1	i e
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	1500	Ì	ì	ì	Ì
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	1.6				
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	0.3	Ì	ì	ì	Ì
Hardness - Total	mgCaCO3/I	1	ISO 17025	326				
	goodea,							
Total Phenols								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10				
(,,	F-3//							
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01				
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01				
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01				
Fluorene	μg/l	0.01	ISO 17025	< 0.01				
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01				
Anthracene	μg/l	0.01	ISO 17025	< 0.01				
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01				
Pyrene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01				
Chrysene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01				
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01				
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01				
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01				
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16				
1000. 2.77 10 17115	μ9/1	0.10	150 17023	, 0.10				
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.16				
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02				
Calcium (dissolved)	mg/l	0.012	ISO 17025	61	i e	1	1	i e
Chromium (dissolved)	μg/l	0.012	ISO 17025	0.3		<b>I</b>	<b>I</b>	1
Copper (dissolved)	μg/l	0.5	ISO 17025	3.8				
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	i e	1	1	i e
Magnesium (dissolved)	mg/l	0.005	ISO 17025	42				
Mercury (dissolved)	μg/l	0.003	ISO 17025	0.15				
Nickel (dissolved)	μg/l	0.5	ISO 17025	4.1				
Phosphorus (dissolved)	μg/l	20	ISO 17025	< 20.0		<b>I</b>	<b>I</b>	1
Selenium (dissolved)	μg/I μg/I	0.6	ISO 17025	20.0				
Zinc (dissolved)	μg/l	0.5	ISO 17025	9.5				
(4.0001704)	μ9/1	0.5	100 1/023	7.3		l	<u> </u>	





Lab Sample Number				1315167	1	ı	1				
Sample Reference				BH09							
Sample Number				1							
Depth (m)				0.89							
				12/09/2019							
Date Sampled Time Taken				None Supplied							
Tille Takeli				None Supplied							
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status								
Monoaromatics & Oxygenates											
Benzene	μg/l	1	ISO 17025	< 1.0							
Toluene	μg/l	1	ISO 17025	< 1.0							
Ethylbenzene	μg/l	1	ISO 17025	< 1.0							
p & m-xylene	μq/l	1	ISO 17025	< 1.0							
o-xylene	μg/l	1	ISO 17025	< 1.0							
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0							
Petroleum Hydrocarbons			100 17025	.10							
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0							
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0							
	μg/l	1	ISO 17025	< 1.0							
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10							
TPH-CWG - Aliphatic >C12 - C16 TPH-CWG - Aliphatic >C16 - C21	μg/l	10 10	NONE	< 10 < 10							
	μg/l		NONE	-							
TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C35 - C44	μg/l μg/l	10 10	NONE NONE	< 10 < 10							
TPH-CWG - Aliphatic (C5 - C35)		10	NONE	< 10							
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10							
TPH-CWG - Allphatic (C5 - C44)	μg/l	10	NONE	< 10	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	I	I	I				
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	<b>-</b>	<b>-</b>	<b>-</b>				
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0							
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10							
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10							
TPH-CWG - Aromatic > C16 - C21	μg/l	10	NONE	< 10							
TPH-CWG - Aromatic > C21 - C35	μg/l	10	NONE	< 10							
TPH-CWG - Aromatic > C35 - C44	μg/l	10	NONE	< 10							
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10							
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10							





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.





#### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 19-59606**

Project / Site name: Cardiff Parkway Samples received on: 16/09/2019

Your job number: 35338 Samples instructed on: 16/09/2019

Your order number: Analysis completed by: 23/09/2019

**Report Issue Number:** 1 **Report issued on:** 23/09/2019

Samples Analysed: 4 water samples

Signed: <

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Sample Number				1315976	1315977	1315978	1315979	
Sample Reference				BH01	BH03	BH06	BH10	
Sample Number				1	1	1	1	
Depth (m)				0.97	1.50	1.06	1.10	
Date Sampled				12/09/2019	12/09/2019	12/09/2019	12/09/2019	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.6	7.8	7.1	8.0	
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	93	< 15	62	85	
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	2.13	3.28	10.5	10.9	
Nitrate as N	mg/l	0.01	ISO 17025	0.35	0.07	0.64	0.11	
Nitrite as N	μg/l	1	ISO 17025	14	14	23	32	
Chemical Oxygen Demand (Total)	mg/l	2	ISO 17025	16	610	110	180	
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	ISO 17025	< 1.0	1.2	< 1.0	1.9	
Total Oxidised Nitrogen (TON)	mg/l	0.3	NONE	0.4	< 0.3	0.7	< 0.3	
Hardness - Total	mgCaCO3/I	1	ISO 17025	250	244	379	315	
Total Phenois		10	100 4700F	. 10	T10	. 10	. 10	
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.36	0.82	0.90	1.47	
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	0.03	0.06	0.04	
Calcium (dissolved)	mg/l	0.012	ISO 17025	60	58	50	44	
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	0.6	
Copper (dissolved)	μg/l	0.5	ISO 17025	8.2	1.7	7.1	13	
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	
Magnesium (dissolved)	mg/l	0.005	ISO 17025	24	24	62	50	
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	
Nickel (dissolved)	μg/l	0.5	ISO 17025	< 0.5	1.3	1.4	1.9	
Phosphorus (dissolved)	μg/l	20	ISO 17025	< 20.0	< 20.0	22.4	55.6	
Selenium (dissolved)	μg/l	0.6	ISO 17025	1.3	1.1	1.2	1.6	
Zinc (dissolved)	μg/l	0.5	ISO 17025	2.9	0.6	0.8	0.6	





Lab Sample Number				1315976	1315977	1315978	1315979	
Sample Reference				BH01	BH03	BH06	BH10	
Sample Number				1	1	1	1	
Depth (m)				0.97	1.50	1.06	1.10	
Date Sampled				12/09/2019	12/09/2019	12/09/2019	12/09/2019	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	5.4	
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Petroleum Hydrocarbons  TPH-CWG - Aliphatic >C5 - C6		1	ISO 17025	< 1.0	.10	.10	.10	
TPH-CWG - Aliphatic >C5 - C6 TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	
TPH-CWG - Aliphatic >C8 - C10 TPH-CWG - Aliphatic >C10 - C12	μg/l			< 1.0	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16	μg/l	10 10	NONE	< 10 < 10	< 10 < 10	< 10 < 10	< 10	
TPH-CWG - Aliphatic >C12 - C16  TPH-CWG - Aliphatic >C16 - C21	μg/l μg/l	10	NONE NONE	< 10	< 10 < 10	< 10	< 10 < 10	
TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C21 - C35	μg/I μg/I	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C35 - C44	μg/I μg/I	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic (C5 - C44)	µg/l	10	NONE	< 10	< 10	< 10	< 10	
c.c Anpiacie (co c++)	P9/1	10	HOHL	` 10	1 10	` 10	1 10	
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic > C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	5.4	
TPH-CWG - Aromatic >C8 - C10	μq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10	< 10	< 10	< 10	





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B.	L086-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078/82-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH01	1	W	19-59606	1315976	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH01	1	W	19-59606	1315976	С	Biological oxygen demand (total) of water	L086-PL	С
BH01	1	W	19-59606	1315976	С	pH at 20oC in water (automated)	L099-PL	С
BH03	1	W	19-59606	1315977	c	Ammoniacal Nitrogen as N in water	L082-PL	С
BH03	1	W	19-59606	1315977	C	Biological oxygen demand (total) of water	L086-PL	С
BH03	1	W	19-59606	1315977	c	pH at 20oC in water (automated)	L099-PL	С
BH06	1	W	19-59606	1315978	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH06	1	W	19-59606	1315978	С	Biological oxygen demand (total) of water	L086-PL	С
BH06	1	W	19-59606	1315978	С	pH at 20oC in water (automated)	L099-PL	С
BH10	1	W	19-59606	1315979	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH10	1	W	19-59606	1315979	С	Biological oxygen demand (total) of water	L086-PL	С
BH10	1	W	19-59606	1315979	С	pH at 20oC in water (automated)	L099-PL	С





### **Edward Crimp**

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

**t:** 01452 527 743 **f:** 01452 729 314

e: edward.crimp@geoeng.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

# **Analytical Report Number: 19-62279**

**Project / Site name:** Cardiff Parkway Samples received on: 24/09/2019

Your job number: 35338 Samples instructed on: 24/09/2019

Your order number: Analysis completed by: 02/10/2019

**Report Issue Number:** 1 **Report issued on:** 02/10/2019

**Samples Analysed:** 5 water samples

Signed:

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





Lab Sample Number				12687	12688	12689	12690	12691
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				1	1	1	1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				24/09/2019	24/09/2019	24/09/2019	24/09/2019	24/09/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
WATERS								
General Inorganics			-					
рН	pH Units	N/A	ISO 17025	8.0	7.5	7.3	7.5	7.4
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	150	93	92	120	46
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	6.84	5.32	9.10	4.29	4.54
Nitrate as N	mg/l	0.01	ISO 17025	1.76	0.35	0.20	0.28	0.22
Nitrite as N	μg/l	1	ISO 17025	60	65	21	13	3.4
Chandal Orange Daniel (Tatal)	mg/l	2	ISO 17025	25	36	24	20	37
Chemical Oxygen Demand (Total)			ISO 17025	3.7	2.1	8.2	2.3	2.2
BOD (Biochemical Oxygen Demand) (Total) - PL	mg/l	1	130 17023					
	mg/l mg/l	0.3	NONE	1.8	0.4	< 0.3	< 0.3	< 0.3
BOD (Biochemical Oxygen Demand) (Total) - PL		0.3 1			0.4 198	< 0.3 208	< 0.3 266	< 0.3 247
BOD (Biochemical Oxygen Demand) (Total) - PL Total Oxidised Nitrogen (TON)	mg/l	0.3 1	NONE	1.8				





Lab Sample Number				12687	12688	12689	12690	12691
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				1	1	1	1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				24/09/2019	24/09/2019	24/09/2019	24/09/2019	24/09/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Speciated PAHs	-							
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16





							10.000	10001
Lab Sample Number				12687	12688	12689	12690	12691
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				1	1	1	1	1
Depth (m)				0.00	0.00	0.00	0.00	0.00
Date Sampled				24/09/2019	24/09/2019	24/09/2019	24/09/2019	24/09/2019
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	•	=	•		-			
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.06	1.57	0.58	0.73	0.89
Boron (dissolved)	μg/l	10	ISO 17025	15	< 10	< 10	11	< 10
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.03	0.02	< 0.02	< 0.02	< 0.02
Calcium (dissolved)	mg/l	0.012	ISO 17025	51	58	61	79	70
Chromium (dissolved)	μg/l	0.2	ISO 17025	2.3	0.9	0.4	0.8	0.6
Copper (dissolved)	μg/l	0.5	ISO 17025	12	8.5	7.4	3.0	7.1
Lead (dissolved)	μg/l	0.2	ISO 17025	1.9	0.8	0.6	0.3	0.4
Magnesium (dissolved)	mg/l	0.005	ISO 17025	9.8	13	14	17	17
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	μg/l	0.5	ISO 17025	1.2	0.8	0.8	0.8	0.8
Phosphorus (dissolved)	μg/l	20	ISO 17025	259	174	295	278	315
Selenium (dissolved)	μg/l	0.6	ISO 17025	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Zinc (dissolved)	μg/l	0.5	ISO 17025	20	18	19	5.7	2.8





Lab Sample Number				12687	12688	12689	12690	12691
Sample Reference				SW1	SW2	SW3	SW4	SW5
Sample Number				1	1	1	1	1
Depth (m)		0.00	0.00	0.00	0.00	0.00		
Date Sampled		24/09/2019	24/09/2019	24/09/2019	24/09/2019	24/09/2019		
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

**Petroleum Hydrocarbons** 





			12687	12688	12689	12690	12691
			SW1	SW2	SW3	SW4	SW5
			1	1	1	1	1
			0.00	0.00	0.00	0.00	0.00
			24/09/2019	24/09/2019	24/09/2019	24/09/2019	24/09/2019
			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Units	Limit of detection	Accreditation Status					
μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
	-	100 17025	.10	.10	.10	-10	< 1.0
	1				•		< 1.0
. 5,							< 1.0
	_						< 1.0 < 10
							< 10
							< 10
	-						< 10
							< 10
							< 10 < 10
	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	µg/l   1   µg/l   1   µg/l   1   µg/l   1   µg/l   1   1   µg/l   10   µg/l   1   µg/l   1   µg/l   1   µg/l   1   µg/l   1   µg/l   10   µg/l   10	µg/l	SW1   1   1   0.00   24/09/2019   None Supplied     Variety of the first of the f	SW1   SW2   1	SW1   SW2   SW3   1	SW1   SW2   SW3   SW4     1





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Biological oxygen demand (total) of water	Determination of biochemical oxygen demand in water (5 days). Accredited matrices: SW, PW, GW.	In-house method based on standard method 5210B. Samples received > 24 hrs after sampling, data may not be valid and should be interpreted with care.	L086-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chemical Oxygen Demand in Water (Total)	Determination of total COD in water by reflux oxidation with acidified K2Cr2O7 followed by colorimetry. Accredited matrices: SW, PW, GW.	HACH DR/890 Colorimeter Procedures Manual (48470-22) (Ref 0170.2)	L065-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
Total oxidised nitrogen in water	Calculation from nitrate and nitrite.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton & Polish Standard Method PN-82/C-04579.08	L078-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE





Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.